BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 19542504)

  • 21. Effects of ad libitum and restricted feeding on early production performance and body composition of Yorkshire pigs selected for reduced residual feed intake.
    Boddicker N; Gabler NK; Spurlock ME; Nettleton D; Dekkers JC
    Animal; 2011 Aug; 5(9):1344-53. PubMed ID: 22440279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic parameters for residual feed intake in growing pigs, with emphasis on genetic relationships with carcass and meat quality traits.
    Gilbert H; Bidanel JP; Gruand J; Caritez JC; Billon Y; Guillouet P; Lagant H; Noblet J; Sellier P
    J Anim Sci; 2007 Dec; 85(12):3182-8. PubMed ID: 17785600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feed intake of sheep as affected by body weight, breed, sex, and feed composition.
    Lewis RM; Emmans GC
    J Anim Sci; 2010 Feb; 88(2):467-80. PubMed ID: 19897642
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of selection for residual feed intake on feeding behavior and daily feed intake patterns in Yorkshire swine.
    Young JM; Cai W; Dekkers JC
    J Anim Sci; 2011 Mar; 89(3):639-47. PubMed ID: 21036935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lifetime reproductive performance and survival analysis of mice divergently selected for heat loss.
    Bhatnagar AS; Nielsen MK
    J Anim Sci; 2014 Feb; 92(2):477-84. PubMed ID: 24664557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic changes and tissue responses to selection on residual feed intake in growing pigs.
    Le Naou T; Le Floc'h N; Louveau I; Gilbert H; Gondret F
    J Anim Sci; 2012 Dec; 90(13):4771-80. PubMed ID: 22871936
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of residual feed intake classification on forage intake by grazing beef cows.
    Meyer AM; Kerley MS; Kallenbach RL
    J Anim Sci; 2008 Oct; 86(10):2670-9. PubMed ID: 18407991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fine mapping quantitative trait loci for feed intake and feed efficiency in beef cattle.
    Sherman EL; Nkrumah JD; Li C; Bartusiak R; Murdoch B; Moore SS
    J Anim Sci; 2009 Jan; 87(1):37-45. PubMed ID: 18791150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of selection for growth on normal and reduced protein diets on weight gain, feed intake, feed efficiency and body composition in mice.
    Nielsen VH; Korsgaard IR
    J Anim Breed Genet; 2006 Dec; 123(6):362-8. PubMed ID: 17177690
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mineral composition of two genetic lines of barrows and gilts from twenty to one hundred twenty-five kilograms of body weight.
    Wiseman TG; Mahan DC; St-Pierre NR
    J Anim Sci; 2009 Jul; 87(7):2306-14. PubMed ID: 19213710
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Season of testing and its effect on feed intake and efficiency in growing beef cattle.
    Mujibi FD; Moore SS; Nkrumah DJ; Wang Z; Basarab JA
    J Anim Sci; 2010 Dec; 88(12):3789-99. PubMed ID: 20817857
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correlations between mitochondrial respiration activity and residual feed intake after divergent genetic selection for high- and low- oxygen consumption in mice.
    Darhan H; Zoda A; Kikusato M; Toyomizu M; Katoh K; Roh SG; Ogawa S; Uemoto Y; Satoh M; Suzuki K
    Anim Sci J; 2019 Jul; 90(7):818-826. PubMed ID: 31016830
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic parameters for measures of energetic efficiency of bulls and their relationships with carcass traits of field progeny in Japanese Black cattle.
    Hoque MA; Hosono M; Oikawa T; Suzuki K
    J Anim Sci; 2009 Jan; 87(1):99-106. PubMed ID: 18765855
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Liver and skeletal muscle mitochondria proteomes are altered in pigs divergently selected for residual feed intake.
    Grubbs JK; Huff-Lonergan E; Gabler NK; M Dekkers JC; Lonergan SM
    J Anim Sci; 2014 May; 92(5):1995-2007. PubMed ID: 24671593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bayesian analysis of the effect of selection for residual feed intake on growth and feed intake curves in Yorkshire swine.
    Cai W; Kaiser MS; Dekkers JC
    J Anim Sci; 2012 Jan; 90(1):127-41. PubMed ID: 21873534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Locomotor activity, core body temperature, and circadian rhythms in mice selected for high or low heat loss.
    Mousel MR; Stroup WW; Nielsen MK
    J Anim Sci; 2001 Apr; 79(4):861-8. PubMed ID: 11325190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Individual efficiency for the use of feed resources in rabbits.
    Piles M; García-Tomás M; Rafel O; Ramon J; Ibañez-Escriche N; Varona L
    J Anim Sci; 2007 Nov; 85(11):2846-53. PubMed ID: 17686894
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physiological basis for residual feed intake.
    Herd RM; Arthur PF
    J Anim Sci; 2009 Apr; 87(14 Suppl):E64-71. PubMed ID: 19028857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Variability in metabolic rate, feed intake and fatness among selection and inbred lines of mice.
    Moody DE; Pomp D; Nielsen MK
    Genet Res; 1997 Dec; 70(3):225-35. PubMed ID: 9494437
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Whole genome single nucleotide polymorphism associations with feed intake and feed efficiency in beef cattle.
    Sherman EL; Nkrumah JD; Moore SS
    J Anim Sci; 2010 Jan; 88(1):16-22. PubMed ID: 19749024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.