BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19542780)

  • 1. Influence of glove type on mobility performance for wheelchair rugby players.
    Mason BS; van der Woude LH; Goosey-Tolfrey VL
    Am J Phys Med Rehabil; 2009 Jul; 88(7):559-70. PubMed ID: 19542780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Influence of Glove Type on Simulated Wheelchair Racing Propulsion: A Pilot Study.
    Rice I; Dysterheft J; Bleakney AW; Cooper RA
    Int J Sports Med; 2016 Jan; 37(1):30-5. PubMed ID: 26509373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of wheel size on mobility performance in wheelchair athletes.
    Mason B; van der Woude L; Lenton JP; Goosey-Tolfrey V
    Int J Sports Med; 2012 Oct; 33(10):807-12. PubMed ID: 22592541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights on the apparel needs and limitations for athletes with disabilities: The design of wheelchair rugby sports-wear.
    Bragança S; Castellucci I; Gill S; Matthias P; Carvalho M; Arezes P
    Appl Ergon; 2018 Feb; 67():9-25. PubMed ID: 29122204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development and evaluation of an ergonomic glove.
    Muralidhar A; Bishu RR; Hallbeck MS
    Appl Ergon; 1999 Dec; 30(6):555-63. PubMed ID: 10693835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic, anaerobic, and skill performance with regard to classification in wheelchair rugby athletes.
    Morgulec-Adamowicz N; Kosmol A; Molik B; Yilla AB; Laskin JJ
    Res Q Exerc Sport; 2011 Mar; 82(1):61-9. PubMed ID: 21462686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wheelchair rugby players maintain sprint performance but alter propulsion biomechanics after simulated match play.
    Briley SJ; O'Brien TJ; Oh YT; Vegter RJK; Chan M; Mason BS; Goosey-Tolfrey VL
    Scand J Med Sci Sports; 2023 Sep; 33(9):1726-1737. PubMed ID: 37278319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altering the Speed Profiles of Wheelchair Rugby Players With Game-Simulation Drill Design.
    Rhodes JM; Mason BS; Paulson TAW; Goosey-Tolfrey VL
    Int J Sports Physiol Perform; 2018 Jan; 13(1):37-43. PubMed ID: 28422583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Test design and individual analysis in wheelchair rugby.
    Haydon DS; Pinder RA; Grimshaw PN; Robertson WSP
    J Sci Med Sport; 2018 Dec; 21(12):1262-1267. PubMed ID: 29685827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sprint performance and propulsion asymmetries on an ergometer in trained high- and low-point wheelchair rugby players.
    Goosey-Tolfrey VL; Vegter RJK; Mason BS; Paulson TAW; Lenton JP; van der Scheer JW; van der Woude LHV
    Scand J Med Sci Sports; 2018 May; 28(5):1586-1593. PubMed ID: 29350429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance, asymmetry and biomechanical parameters in wheelchair rugby players.
    Bakatchina S; Weissland T; Astier M; Pradon D; Faupin A
    Sports Biomech; 2024 Jul; 23(7):884-897. PubMed ID: 33792504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overground-Propulsion Kinematics and Acceleration in Elite Wheelchair Rugby.
    Haydon DS; Pinder RA; Grimshaw PN; Robertson WSP
    Int J Sports Physiol Perform; 2018 Feb; 13(2):156-162. PubMed ID: 28530452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of team rank and player classification on activity profiles of elite wheelchair rugby players.
    Rhodes JM; Mason BS; Malone LA; Goosey-Tolfrey VL
    J Sports Sci; 2015; 33(19):2070-8. PubMed ID: 25812720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A qualitative examination of wheelchair configuration for optimal mobility performance in wheelchair sports: a pilot study.
    Mason BS; Porcellato L; van der Woude LH; Goosey-Tolfrey VL
    J Rehabil Med; 2010 Feb; 42(2):141-9. PubMed ID: 20140410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Case study on the effects of fit and material of sports gloves on hand performance.
    Yu A; Yick KL; Ng SP; Yip J
    Appl Ergon; 2019 Feb; 75():17-26. PubMed ID: 30509523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of glove thickness and work load on female hand performance and fatigue during a infrequent high-intensity gripping task.
    Chang CH; Shih YC
    Appl Ergon; 2007 May; 38(3):317-24. PubMed ID: 16806041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion analyses of adolescent rugby union players: a comparison of training and game demands.
    Hartwig TB; Naughton G; Searl J
    J Strength Cond Res; 2011 Apr; 25(4):966-72. PubMed ID: 20647941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glove attributes and their contribution to force decrement and increased effort in power grip.
    Willms K; Wells R; Carnahan H
    Hum Factors; 2009 Dec; 51(6):797-812. PubMed ID: 20415156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors that influence the selection of sterile glove brand: a randomized controlled trial evaluating the performance and cost of gloves.
    Johnson RL; Smith HM; Duncan CM; Torsher LC; Schroeder DR; Hebl JR
    Can J Anaesth; 2013 Jul; 60(7):700-8. PubMed ID: 23637031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Safety performance of gloves using the pressure tolerance of the hand.
    Muralidhar A; Bishu RR
    Ergonomics; 2000 May; 43(5):561-72. PubMed ID: 10877476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.