BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 1954332)

  • 1. Renal corticomedullary metabolite gradients during graded arterial occlusion: a localized 31P magnetic resonance spectroscopy study.
    Parivar F; Narasimhan PT; Ross B
    J Am Soc Nephrol; 1991 Aug; 2(2):200-11. PubMed ID: 1954332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation between renal cortex and medulla in the response to hypotension using localized 31P magnetic resonance spectroscopy.
    Freeman DM; Barker PB; Parivar F; Benninghoven S; Jones LW; Moress EA; Ross B
    Transplantation; 1989 Aug; 48(2):202-9. PubMed ID: 2756556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional decreases in renal oxygenation during graded acute renal arterial stenosis: a case for renal ischemia.
    Warner L; Gomez SI; Bolterman R; Haas JA; Bentley MD; Lerman LO; Romero JC
    Am J Physiol Regul Integr Comp Physiol; 2009 Jan; 296(1):R67-71. PubMed ID: 18971350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen and carbon dioxide tensions in the canine kidney during arterial occlusion and hemorrhagic hypotension.
    Nelimarkka O; Niinikoski J
    Surg Gynecol Obstet; 1984 Jan; 158(1):27-32. PubMed ID: 6419359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Could cytoplasmic concentration gradients for sodium and ATP exist in intact renal cells?
    Ammann H; Noël J; Tejedor A; Boulanger Y; Gougoux A; Vinay P
    Can J Physiol Pharmacol; 1995 Apr; 73(4):421-35. PubMed ID: 7671185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kidney outer medulla mitochondria are more efficient compared with cortex mitochondria as a strategy to sustain ATP production in a suboptimal environment.
    Schiffer TA; Gustafsson H; Palm F
    Am J Physiol Renal Physiol; 2018 Sep; 315(3):F677-F681. PubMed ID: 29846107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 31P nuclear magnetic resonance and saturation transfer studies of the isolated perfused rat kidney.
    Dowd T; Barac-Nieto M; Gupta RK; Spitzer A
    Ren Physiol Biochem; 1989; 12(3):161-70. PubMed ID: 2623343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of acidosis, alkalosis and monofluoroacetate administration on citrate and ATP content of rat renal medulla and papilla.
    Simonnet H; Gauthier C; Pellet M
    Arch Int Physiol Biochim; 1980 Feb; 88(1):69-74. PubMed ID: 6155885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual energy CT monitoring of the renal corticomedullary sodium gradient in swine.
    Kumar R; Wang ZJ; Forsythe C; Fu Y; Chen YY; Yeh BM
    Eur J Radiol; 2012 Mar; 81(3):423-9. PubMed ID: 21237601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional responses within the kidney to ischemia: assessment of adenine nucleotide and catabolite profiles.
    Zager RA; Gmur DJ; Bredl CR; Eng MJ; Fisher L
    Biochim Biophys Acta; 1990 Jul; 1035(1):29-36. PubMed ID: 2383578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential in vivo measurement of cerebral intracellular metabolites with phosphorus-31 magnetic resonance spectroscopy during global cerebral ischemia and reperfusion in rats.
    Andrews BT; Weinstein PR; Keniry M; Pereira B
    Neurosurgery; 1987 Nov; 21(5):699-708. PubMed ID: 3696405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of adrenomedullin in hypoxic and ischemic rat kidneys and human kidneys with arterial stenosis.
    Sandner P; Hofbauer KH; Tinel H; Kurtz A; Thiesson HC; Ottosen PD; Walter S; Skøtt O; Jensen BL
    Am J Physiol Regul Integr Comp Physiol; 2004 May; 286(5):R942-51. PubMed ID: 14715486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ischemic-reperfusion injury in the kidney: overexpression of colonic H+-K+-ATPase and suppression of NHE-3.
    Wang Z; Rabb H; Craig T; Burnham C; Shull GE; Soleimani M
    Kidney Int; 1997 Apr; 51(4):1106-15. PubMed ID: 9083276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 31P NMR studies of ATP concentrations and Pi-ATP exchange in the rat kidney in vivo: effects of inhibiting and stimulating renal metabolism.
    Shine N; Xuan A; Weiner MW
    Magn Reson Med; 1990 Jun; 14(3):445-60. PubMed ID: 2355828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The purine nucleotide cycle activity in renal cortex and medulla.
    Stepiński J; Bizon D; Piec G; Angielski S
    Am J Kidney Dis; 1989 Oct; 14(4):307-9. PubMed ID: 2801700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations in rat renal cortical and medullary guanosine 3'5'-monophosphate accumulation by oxygen- and calcium-dependent and -independent mechanisms: evidence for a calcium-independent action of oxygen in renal inner medulla.
    DeRubertis FR; Craven PA
    Metabolism; 1978 Jul; 27(7):855-68. PubMed ID: 207948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of in situ renal transplant viability by 31P-MRS: experimental study in canines.
    Bretan PN; Vigneron DB; Hricak H; Price DC; Yen TS; Luo JA; Tanagho EA; James TL
    Am Surg; 1993 Mar; 59(3):182-7. PubMed ID: 8386489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR studies of renal phosphate metabolites in vivo: effects of hydration and dehydration.
    Wolff SD; Eng C; Balaban RS
    Am J Physiol; 1988 Oct; 255(4 Pt 2):F581-9. PubMed ID: 3177650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats.
    O'Neill J; Fasching A; Pihl L; Patinha D; Franzén S; Palm F
    Am J Physiol Renal Physiol; 2015 Aug; 309(3):F227-34. PubMed ID: 26041448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: assessment by 31P-NMR spectroscopy.
    Williams JP; Headrick JP
    Biochim Biophys Acta; 1996 Aug; 1276(1):71-9. PubMed ID: 8764892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.