BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 1954332)

  • 21. The role of intrarenal pH in regulation of ammoniagenesis: [31P]NMR studies of the isolated perfused rat kidney.
    Ackerman JJ; Lowry M; Radda GK; Ross BD; Wong GG
    J Physiol; 1981; 319():65-79. PubMed ID: 7320929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of ischemia and hypertonic saline loading on renal adenine nucleotides.
    Knutsen Urbaitis B
    Ren Physiol; 1984; 7(1):22-31. PubMed ID: 6701394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activation of heat-shock transcription factor by graded reductions in renal ATP, in vivo, in the rat.
    Van Why SK; Mann AS; Thulin G; Zhu XH; Kashgarian M; Siegel NJ
    J Clin Invest; 1994 Oct; 94(4):1518-23. PubMed ID: 7929828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two substrate sites in the renal Na(+)-D-glucose cotransporter studied by model analysis of phlorizin binding and D-glucose transport measurements.
    Koepsell H; Fritzsch G; Korn K; Madrala A
    J Membr Biol; 1990 Mar; 114(2):113-32. PubMed ID: 2342089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of ischemia on metabolite concentrations in dog renal cortex.
    Cunarro JA; Schultz SE; Johnson WA; Weiner MW
    Ren Physiol; 1982; 5(3):143-55. PubMed ID: 6125003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 31P nuclear magnetic resonance study of steady-state adenosine 5'-triphosphate levels during graded hypoxia in the isolated perfused rat kidney.
    Ratcliffe PJ; Endre ZH; Scheinman SJ; Tange JD; Ledingham JG; Radda GK
    Clin Sci (Lond); 1988 Apr; 74(4):437-48. PubMed ID: 3356115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of the renal corticomedullary (23)Na gradient using isotropic data sets.
    Haneder S; Konstandin S; Morelli JN; Schad LR; Schoenberg SO; Michaely HJ
    Acad Radiol; 2013 Apr; 20(4):407-13. PubMed ID: 23498980
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A study on the properties of mitochondria from rat kidney cortex and red medulla.
    Kirsten E; Seger W; Nelson K; Kirsten R
    Curr Probl Clin Biochem; 1976; 6():134-41. PubMed ID: 1001002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 31P NMR studies of energy metabolism in perfused rat kidney.
    Rhodes RS; Jentoft JE; Barr RG; Robinson AV
    J Surg Res; 1983 Nov; 35(5):373-82. PubMed ID: 6632864
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contributions of nuclear magnetic resonance to renal biochemistry.
    Ross B; Freeman D; Chan L
    Kidney Int; 1986 Jan; 29(1):131-41. PubMed ID: 3007850
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional assessment of canine kidneys after acute vascular occlusion on Gd-DTPA-enhanced dynamic echo-planar MR imaging.
    Suga K; Ogasawara N; Okazaki H; Sasai K; Matsunaga N
    Invest Radiol; 2001 Nov; 36(11):659-76. PubMed ID: 11606844
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NMR studies of phosphate metabolism in the isolated perfused kidney of developing rats.
    Barac-Nieto M; Gupta RK; Spitzer A
    Pediatr Nephrol; 1990 Jul; 4(4):392-8. PubMed ID: 2206909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acute renal failure in hemorrhagic hypotension: cellular energetics and renal function.
    Ratcliffe PJ; Moonen CT; Holloway PA; Ledingham JG; Radda GK
    Kidney Int; 1986 Sep; 30(3):355-60. PubMed ID: 3784280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disparate mechanisms for hypoxic cell injury in different nephron segments. Studies in the isolated perfused rat kidney.
    Brezis M; Shanley P; Silva P; Spokes K; Lear S; Epstein FH; Rosen S
    J Clin Invest; 1985 Nov; 76(5):1796-806. PubMed ID: 4056054
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Incorporation of labelled amino acids into kidney proteins after acute renal ischemia].
    Makarenko VS; Gapanovich VM
    Vopr Med Khim; 1974; 20(2):178-82. PubMed ID: 4450518
    [No Abstract]   [Full Text] [Related]  

  • 36. Postichemic renal failure: accelerated recovery with adenosine triphosphate-magnesium chloride infusion.
    Osias MB; Siegel NJ; Chaudry IH; Lytton B; Baue AE
    Arch Surg; 1977 Jun; 112(6):729-31. PubMed ID: 860922
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of ATP on rat renal haemodynamics and excretion: role of sodium intake, nitric oxide and cytochrome P450.
    Dobrowolski L; Walkowska A; Kompanowska-Jezierska E; Kuczeriszka M; Sadowski J
    Acta Physiol (Oxf); 2007 Jan; 189(1):77-85. PubMed ID: 17280559
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lactate mapping in ischemic rat kidneys using 1H spectroscopic imaging.
    Terrier F; Lazeyras F; Frey BM; Frey FJ
    Invest Radiol; 1992 Apr; 27(4):282-6. PubMed ID: 1601617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contrast-enhanced ultrasound identifies reduced overall and regional renal perfusion during global hypoxia in piglets.
    Brabrand K; de Lange C; Emblem KE; Reinholt FP; Saugstad OD; Stokke ES; Munkeby BH
    Invest Radiol; 2014 Aug; 49(8):540-6. PubMed ID: 24637585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Is the function of the renal papilla coupled exclusively to an anaerobic pattern of metabolism?
    Cohen JJ
    Am J Physiol; 1979 May; 236(5):F423-33. PubMed ID: 220881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.