These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 19543604)

  • 1. Heterogeneous chemistry of toluene, kerosene and diesel soots.
    Daly HM; Horn AB
    Phys Chem Chem Phys; 2009 Feb; 11(7):1069-76. PubMed ID: 19543604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. XPS analysis of combustion aerosols for chemical composition, surface chemistry, and carbon chemical state.
    Vander Wal RL; Bryg VM; Hays MD
    Anal Chem; 2011 Mar; 83(6):1924-30. PubMed ID: 21322576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water interaction with hydrophobic and hydrophilic soot particles.
    Popovicheva O; Persiantseva NM; Shonija NK; DeMott P; Koehler K; Petters M; Kreidenweis S; Tishkova V; Demirdjian B; Suzanne J
    Phys Chem Chem Phys; 2008 May; 10(17):2332-44. PubMed ID: 18414725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of carbonaceous combustion residues. I. Morphological, elemental and spectroscopic features.
    Fernandes MB; Skjemstad JO; Johnson BB; Wells JD; Brooks P
    Chemosphere; 2003 Jun; 51(8):785-95. PubMed ID: 12668037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles.
    Koehler KA; DeMott PJ; Kreidenweis SM; Popovicheva OB; Petters MD; Carrico CM; Kireeva ED; Khokhlova TD; Shonija NK
    Phys Chem Chem Phys; 2009 Sep; 11(36):7906-20. PubMed ID: 19727498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake of HNO3 on hexane and aviation kerosene soots.
    Talukdar RK; Loukhovitskaya EE; Popovicheva OB; Ravishankara AR
    J Phys Chem A; 2006 Aug; 110(31):9643-53. PubMed ID: 16884198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of heterogeneous chemistry for the characterization of functional groups at the gas/particle interface of soot and TiO2 nanoparticles.
    Setyan A; Sauvain JJ; Rossi MJ
    Phys Chem Chem Phys; 2009 Aug; 11(29):6205-17. PubMed ID: 19606331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous reaction of NO(2) on fresh and coated soot surfaces.
    Khalizov AF; Cruz-Quinones M; Zhang R
    J Phys Chem A; 2010 Jul; 114(28):7516-24. PubMed ID: 20575530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wetting and hydration of insoluble soot particles in the upper troposphere.
    Persiantseva NM; Popovicheva OB; Shonija NK
    J Environ Monit; 2004 Dec; 6(12):939-45. PubMed ID: 15568040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of the hygroscopic effect of soot aging in the atmosphere: laboratory simulations.
    Popovicheva OB; Persiantseva NM; Kireeva ED; Khokhlova TD; Shonija NK
    J Phys Chem A; 2011 Jan; 115(3):298-306. PubMed ID: 21186790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laboratory investigation of heterogeneous interaction of sulfuric acid with soot.
    Zhang D; Zhang R
    Environ Sci Technol; 2005 Aug; 39(15):5722-8. PubMed ID: 16124308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study of the interaction of HO2 radicals with soot surface.
    Bedjanian Y; Lelièvre S; Le Bras G
    Phys Chem Chem Phys; 2005 Jan; 7(2):334-41. PubMed ID: 19785156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiwavelength Raman microspectroscopy for rapid prediction of soot oxidation reactivity.
    Schmid J; Grob B; Niessner R; Ivleva NP
    Anal Chem; 2011 Feb; 83(4):1173-9. PubMed ID: 21261257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of carbon black with soot.
    Medalia AI; Rivin D; Sanders DR
    Sci Total Environ; 1983 Oct; 31(1):1-22. PubMed ID: 6197752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A morphological investigation of soot produced by the detonation of munitions.
    Pantea D; Brochu S; Thiboutot S; Ampleman G; Scholz G
    Chemosphere; 2006 Oct; 65(5):821-31. PubMed ID: 16674994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soot structure and reactivity analysis by Raman microspectroscopy, temperature-programmed oxidation, and high-resolution transmission electron microscopy.
    Knauer M; Schuster ME; Su D; Schlögl R; Niessner R; Ivleva NP
    J Phys Chem A; 2009 Dec; 113(50):13871-80. PubMed ID: 19899796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Models for the sorption of volatile organic compounds by diesel soot and atmospheric aerosols.
    Atapattu SN; Poole CF
    J Environ Monit; 2009 Apr; 11(4):815-22. PubMed ID: 19557236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous chemistry of organic acids on soot surfaces.
    Levitt NP; Zhang R; Xue H; Chen J
    J Phys Chem A; 2007 Jun; 111(22):4804-14. PubMed ID: 17497835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of heterogeneous chemistry for the characterization of functional groups at the gas/particle interface of soot from a diesel engine at a particular running condition.
    Tapia A; Salgado MS; Martín MP; Sánchez-Valdepeñas J; Rossi MJ; Cabañas B
    Environ Sci Pollut Res Int; 2015 Apr; 22(7):4863-72. PubMed ID: 24807246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soot morphology: an application of image analysis in high-resolution transmission electron microscopy.
    Palotás AB; Rainey LC; Feldermann CJ; Sarofim AF; Vander Sande JB
    Microsc Res Tech; 1996 Feb; 33(3):266-78. PubMed ID: 8652885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.