These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19543886)

  • 21. In situ fluorimetry: a powerful non-invasive diagnostic technique for natural dyes used in artefacts Part I. Spectral characterization of orcein in solution, on silk and wool laboratory-standards and a fragment of Renaissance tapestry.
    Clementi C; Miliani C; Romani A; Favaro G
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Jul; 64(4):906-12. PubMed ID: 16332451
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Investigation of fibrous cultural materials by infrared spectroscopy].
    Luo XY; Du YP; Shen MH; Zhang WQ; Zhou XG; Fang SY; Zhang X
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jan; 35(1):60-4. PubMed ID: 25993821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-pot extraction-analysis of dyed wool fibers with ionic liquids.
    Lovejoy KS; Lou AJ; Davis LE; Sanchez TC; Iyer S; Corley CA; Wilkes JS; Feller RK; Fox DT; Koppisch AT; Del Sesto RE
    Anal Chem; 2012 Nov; 84(21):9169-75. PubMed ID: 23066794
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of detergents for forensic fiber analysis.
    Heider EC; Mujumdar N; Campiglia AD
    Anal Bioanal Chem; 2016 Nov; 408(28):7935-7943. PubMed ID: 27640204
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of Raman spectroscopy to forensic fibre cases.
    Lepot L; De Wael K; Gason F; Gilbert B
    Sci Justice; 2008 Sep; 48(3):109-17. PubMed ID: 18953798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of primary aromatic amines originated from azo dyes in commercial textile products in Japan.
    Kawakami T; Isama K; Nakashima H; Tsuchiya T; Matsuoka A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Aug; 45(10):1281-95. PubMed ID: 20658407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-invasive analysis of natural textile dyes using fluorescence excitation-emission matrices.
    Selberg S; Vanker E; Peets P; Wright K; Tshepelevitsh S; Pagano T; Vahur S; Herodes K; Leito I
    Talanta; 2023 Jan; 252():123805. PubMed ID: 36001901
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromatographic Analysis of Textile Dyes.
    Simion Beldean-Galea M; Copaciu FM; Coman MV
    J AOAC Int; 2018 Sep; 101(5):1353-1370. PubMed ID: 29743133
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent applications of liquid chromatography-mass spectrometry in forensic science.
    Wood M; Laloup M; Samyn N; del Mar Ramirez Fernandez M; de Bruijn EA; Maes RA; De Boeck G
    J Chromatogr A; 2006 Oct; 1130(1):3-15. PubMed ID: 16716330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive characterisation of flame retardants in textile furnishings by ambient high resolution mass spectrometry, gas chromatography-mass spectrometry and environmental forensic microscopy.
    Ionas AC; Ballesteros Gómez A; Uchida N; Suzuki G; Kajiwara N; Takata K; Takigami H; Leonards PE; Covaci A
    Environ Res; 2015 Oct; 142():712-9. PubMed ID: 26398896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The importance of thin layer chromatography and UV microspectrophotometry in the analysis of reactive dyes released from wool and cotton fibers.
    Wiggins KG; Holness JA; March BM
    J Forensic Sci; 2005 Mar; 50(2):364-8. PubMed ID: 15813547
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of Capillary Electromigration Methods in the Analysis of Textile Dyes-Review.
    Sałdan A; Król M; Woźniakiewicz M; Kościelniak P
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Forensic Fiber Examination and Analysis.
    Hauck MM
    Forensic Sci Rev; 2005 Jan; 17(1):29-49. PubMed ID: 26257109
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In-situ detection of single particles of explosive on clothing with confocal Raman microscopy.
    Ali EM; Edwards HG; Scowen IJ
    Talanta; 2009 May; 78(3):1201-3. PubMed ID: 19269494
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characteristic dye absorption peaks found in the FTIR spectra of coloured acrylic fibres.
    Grieve MC; Griffin RM; Malone R
    Sci Justice; 1998; 38(1):27-37. PubMed ID: 9624811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nondestructive identification of dye mixtures in polyester and cotton fibers using raman spectroscopy and ultraviolet-visible (UV-Vis) microspectrophotometry.
    Was-Gubala J; Starczak R
    Appl Spectrosc; 2015; 69(2):296-303. PubMed ID: 25588115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent advances in the applications of CE to forensic sciences (2005-2007).
    Tagliaro F; Bortolotti F
    Electrophoresis; 2008 Jan; 29(1):260-8. PubMed ID: 18058765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The discrimination of colored acrylic, cotton, and wool textile fibers using micro-Raman spectroscopy. Part 1: in situ detection and characterization of dyes.
    Buzzini P; Massonnet G
    J Forensic Sci; 2013 Nov; 58(6):1593-600. PubMed ID: 24147967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An investigation into the use of calculating the first derivative of absorbance spectra as a tool for forensic fibre analysis.
    Wiggins K; Palmer R; Hutchinson W; Drummond P
    Sci Justice; 2007 May; 47(1):9-18. PubMed ID: 18572727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing Textile Fiber Identification with Detergent Fluorescence.
    Mujumdar N; Heider EC; Campiglia AD
    Appl Spectrosc; 2015 Dec; 69(12):1390-6. PubMed ID: 26647148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.