These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Thermodynamics of copper and zinc distribution in the cyanobacterium Synechocystis PCC 6803. Badarau A; Dennison C Proc Natl Acad Sci U S A; 2011 Aug; 108(32):13007-12. PubMed ID: 21778408 [TBL] [Abstract][Full Text] [Related]
5. A copper metallochaperone for photosynthesis and respiration reveals metal-specific targets, interaction with an importer, and alternative sites for copper acquisition. Tottey S; Rondet SA; Borrelly GP; Robinson PJ; Rich PR; Robinson NJ J Biol Chem; 2002 Feb; 277(7):5490-7. PubMed ID: 11739376 [TBL] [Abstract][Full Text] [Related]
6. Chimeras of P-type ATPases and their transcriptional regulators: contributions of a cytosolic amino-terminal domain to metal specificity. Borrelly GP; Rondet SA; Tottey S; Robinson NJ Mol Microbiol; 2004 Jul; 53(1):217-27. PubMed ID: 15225316 [TBL] [Abstract][Full Text] [Related]
7. An SmtB-like repressor from Synechocystis PCC 6803 regulates a zinc exporter. Thelwell C; Robinson NJ; Turner-Cavet JS Proc Natl Acad Sci U S A; 1998 Sep; 95(18):10728-33. PubMed ID: 9724772 [TBL] [Abstract][Full Text] [Related]
8. Investigating the role of zinc and copper binding motifs of trafficking sites in the cyanobacterium Synechocystis PCC 6803. Badarau A; Baslé A; Firbank SJ; Dennison C Biochemistry; 2013 Oct; 52(39):6816-23. PubMed ID: 24050657 [TBL] [Abstract][Full Text] [Related]
9. Copper chaperone antioxidant protein1 is essential for copper homeostasis. Shin LJ; Lo JC; Yeh KC Plant Physiol; 2012 Jul; 159(3):1099-110. PubMed ID: 22555879 [TBL] [Abstract][Full Text] [Related]
10. Atx1-like chaperones and their cognate P-type ATPases: copper-binding and transfer. Singleton C; Le Brun NE Biometals; 2007 Jun; 20(3-4):275-89. PubMed ID: 17225061 [TBL] [Abstract][Full Text] [Related]
11. Solution structures of a cyanobacterial metallochaperone: insight into an atypical copper-binding motif. Banci L; Bertini I; Ciofi-Baffoni S; Su XC; Borrelly GP; Robinson NJ J Biol Chem; 2004 Jun; 279(26):27502-10. PubMed ID: 15075318 [TBL] [Abstract][Full Text] [Related]
12. Metal specificity of cyanobacterial nickel-responsive repressor InrS: cells maintain zinc and copper below the detection threshold for InrS. Foster AW; Pernil R; Patterson CJ; Robinson NJ Mol Microbiol; 2014 May; 92(4):797-812. PubMed ID: 24666373 [TBL] [Abstract][Full Text] [Related]
13. Higher plants possess two different types of ATX1-like copper chaperones. Puig S; Mira H; Dorcey E; Sancenón V; Andrés-Colás N; Garcia-Molina A; Burkhead JL; Gogolin KA; Abdel-Ghany SE; Thiele DJ; Ecker JR; Pilon M; Peñarrubia L Biochem Biophys Res Commun; 2007 Mar; 354(2):385-90. PubMed ID: 17223078 [TBL] [Abstract][Full Text] [Related]
14. Structure and metal loading of a soluble periplasm cuproprotein. Waldron KJ; Firbank SJ; Dainty SJ; Pérez-Rama M; Tottey S; Robinson NJ J Biol Chem; 2010 Oct; 285(42):32504-11. PubMed ID: 20702411 [TBL] [Abstract][Full Text] [Related]
15. Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR. Petersen C; Møller LB Gene; 2000 Dec; 261(2):289-98. PubMed ID: 11167016 [TBL] [Abstract][Full Text] [Related]
16. CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA. Radford DS; Kihlken MA; Borrelly GP; Harwood CR; Le Brun NE; Cavet JS FEMS Microbiol Lett; 2003 Mar; 220(1):105-12. PubMed ID: 12644235 [TBL] [Abstract][Full Text] [Related]
17. Expression and mutagenesis of ZntA, a zinc-transporting P-type ATPase from Escherichia coli. Okkeri J; Haltia T Biochemistry; 1999 Oct; 38(42):14109-16. PubMed ID: 10529259 [TBL] [Abstract][Full Text] [Related]