BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1025 related articles for article (PubMed ID: 19544030)

  • 1. Isotope-labeling and affinity enrichment of phosphopeptides for proteomic analysis using liquid chromatography-tandem mass spectrometry.
    Kota U; Chien KY; Goshe MB
    Methods Mol Biol; 2009; 564():303-21. PubMed ID: 19544030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoproteome analysis by in-gel isoelectric focusing and tandem mass spectrometry.
    Beranova-Giorgianni S; Desiderio DM; Giorgianni F
    Methods Mol Biol; 2009; 519():383-96. PubMed ID: 19381597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative phosphoproteomics studies using stable isotope dimethyl labeling coupled with IMAC-HILIC-nanoLC-MS/MS for estrogen-induced transcriptional regulation.
    Wu CJ; Chen YW; Tai JH; Chen SH
    J Proteome Res; 2011 Mar; 10(3):1088-97. PubMed ID: 21210654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and application of a phosphoproteomic method using electrostatic repulsion-hydrophilic interaction chromatography (ERLIC), IMAC, and LC-MS/MS analysis to study Marek's Disease Virus infection.
    Chien KY; Liu HC; Goshe MB
    J Proteome Res; 2011 Sep; 10(9):4041-53. PubMed ID: 21736374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilized metal affinity chromatography/reversed-phase enrichment of phosphopeptides and analysis by CID/ETD tandem mass spectrometry.
    Navajas R; Paradela A; Albar JP
    Methods Mol Biol; 2011; 681():337-48. PubMed ID: 20978974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of phosphorylated proteins.
    Turkina MV; Vener AV
    Methods Mol Biol; 2007; 355():305-16. PubMed ID: 17093319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enrichment and preparation of plasma membrane proteins from Arabidopsis thaliana for global proteomic analysis using liquid chromatography-tandem mass spectrometry.
    Mitra SK; Clouse SD; Goshe MB
    Methods Mol Biol; 2009; 564():341-55. PubMed ID: 19544033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis.
    Han G; Ye M; Liu H; Song C; Sun D; Wu Y; Jiang X; Chen R; Wang C; Wang L; Zou H
    Electrophoresis; 2010 Mar; 31(6):1080-9. PubMed ID: 20166139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of monolithic supports in proteomics technology.
    Josic D; Clifton JG
    J Chromatogr A; 2007 Mar; 1144(1):2-13. PubMed ID: 17174320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphopeptide quantitation using amine-reactive isobaric tagging reagents and tandem mass spectrometry: application to proteins isolated by gel electrophoresis.
    Sachon E; Mohammed S; Bache N; Jensen ON
    Rapid Commun Mass Spectrom; 2006; 20(7):1127-34. PubMed ID: 16521170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Citrate boosts the performance of phosphopeptide analysis by UPLC-ESI-MS/MS.
    Winter D; Seidler J; Ziv Y; Shiloh Y; Lehmann WD
    J Proteome Res; 2009 Jan; 8(1):418-24. PubMed ID: 19053530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography.
    Han G; Ye M; Zhou H; Jiang X; Feng S; Jiang X; Tian R; Wan D; Zou H; Gu J
    Proteomics; 2008 Apr; 8(7):1346-61. PubMed ID: 18318008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully automatic separation and identification of phosphopeptides by continuous pH-gradient anion exchange online coupled with reversed-phase liquid chromatography mass spectrometry.
    Dai J; Wang LS; Wu YB; Sheng QH; Wu JR; Shieh CH; Zeng R
    J Proteome Res; 2009 Jan; 8(1):133-41. PubMed ID: 19053533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing phosphoproteins and phosphoproteomes using mass spectrometry.
    Goshe MB
    Brief Funct Genomic Proteomic; 2006 Feb; 4(4):363-76. PubMed ID: 17202127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous quantification of protein phosphorylation sites using liquid chromatography-tandem mass spectrometry-based targeted proteomics: a linear algebra approach for isobaric phosphopeptides.
    Xu F; Yang T; Sheng Y; Zhong T; Yang M; Chen Y
    J Proteome Res; 2014 Dec; 13(12):5452-60. PubMed ID: 25403019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tools for analyzing the phosphoproteome and other phosphorylated biomolecules: a review.
    Leitner A; Sturm M; Lindner W
    Anal Chim Acta; 2011 Oct; 703(1):19-30. PubMed ID: 21843671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis.
    Li Y; Xu X; Qi D; Deng C; Yang P; Zhang X
    J Proteome Res; 2008 Jun; 7(6):2526-38. PubMed ID: 18473453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping of phosphorylation sites by LC-MS/MS.
    Gerrits B; Bodenmiller B
    Methods Mol Biol; 2010; 658():127-36. PubMed ID: 20839101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 52.