These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 19544059)

  • 1. Removal of visual feedback alters muscle activity and reduces force variability during constant isometric contractions.
    Baweja HS; Patel BK; Martinkewiz JD; Vu J; Christou EA
    Exp Brain Res; 2009 Jul; 197(1):35-47. PubMed ID: 19544059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction of respiration and visual feedback on the control of force and neural activation of the agonist muscle.
    Baweja HS; Patel BK; Neto OP; Christou EA
    Hum Mov Sci; 2011 Dec; 30(6):1022-38. PubMed ID: 21546109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Greater amount of visual information exacerbates force control in older adults during constant isometric contractions.
    Kennedy DM; Christou EA
    Exp Brain Res; 2011 Sep; 213(4):351-61. PubMed ID: 21800256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Greater amount of visual feedback decreases force variability by reducing force oscillations from 0-1 and 3-7 Hz.
    Baweja HS; Kennedy DM; Vu J; Vaillancourt DE; Christou EA
    Eur J Appl Physiol; 2010 Mar; 108(5):935-43. PubMed ID: 19953262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endpoint accuracy for a small and a large hand muscle in young and old adults during rapid, goal-directed isometric contractions.
    Poston B; Enoka JA; Enoka RM
    Exp Brain Res; 2008 May; 187(3):373-85. PubMed ID: 18288474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Timing variability and not force variability predicts the endpoint accuracy of fast and slow isometric contractions.
    Poston B; Christou EA; Enoka JA; Enoka RM
    Exp Brain Res; 2010 Apr; 202(1):189-202. PubMed ID: 20033680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removing visual feedback for a single limb alters between-limb force tremor relationships during isometric bilateral contractions.
    Kenway LC; Bisset LM; Kavanagh JJ
    Exp Brain Res; 2015 Jan; 233(1):115-24. PubMed ID: 25234402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-range correlations in motor unit discharge times at low forces are modulated by visual gain and age.
    Jordan K; Jesunathadas M; Sarchet DM; Enoka RM
    Exp Physiol; 2013 Feb; 98(2):546-55. PubMed ID: 22983995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-associated impairement in endpoint accuracy of goal-directed contractions performed with two fingers is due to altered activation of the synergistic muscles.
    Chen YT; Pinto Neto O; de Miranda Marzullo AC; Kennedy DM; Fox EJ; Christou EA
    Exp Gerontol; 2012 Jul; 47(7):519-26. PubMed ID: 22580059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor unit control properties in constant-force isometric contractions.
    de Luca CJ; Foley PJ; Erim Z
    J Neurophysiol; 1996 Sep; 76(3):1503-16. PubMed ID: 8890270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial differences in fatigue-associated electromyographic behaviour of the human first dorsal interosseus muscle.
    Zijdewind I; Kernell D; Kukulka CG
    J Physiol; 1995 Mar; 483 ( Pt 2)(Pt 2):499-509. PubMed ID: 7650617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnified visual feedback exacerbates positional variability in older adults due to altered modulation of the primary agonist muscle.
    Baweja HS; Kwon M; Christou EA
    Exp Brain Res; 2012 Oct; 222(4):355-64. PubMed ID: 22948735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visually guided targeting enhances bilateral force variability in healthy older adults.
    Kenway LC; Bisset LM; Kavanagh JJ
    Neurobiol Aging; 2016 Jan; 37():127-137. PubMed ID: 26521134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnification of visual feedback modulates corticomuscular and intermuscular coherences differently in young and elderly adults.
    Watanabe T; Nojima I; Mima T; Sugiura H; Kirimoto H
    Neuroimage; 2020 Oct; 220():117089. PubMed ID: 32592849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual information gain and the regulation of constant force levels.
    Lee Hong S; Newell KM
    Exp Brain Res; 2008 Jul; 189(1):61-9. PubMed ID: 18470508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The amplitude of force variability is correlated in the knee extensor and elbow flexor muscles.
    Tracy BL; Mehoudar PD; Ortega JD
    Exp Brain Res; 2007 Jan; 176(3):448-64. PubMed ID: 16896977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial reorganisation of muscle activity correlates with change in tangential force variability during isometric contractions.
    Mista CA; Salomoni SE; Graven-Nielsen T
    J Electromyogr Kinesiol; 2014 Feb; 24(1):37-45. PubMed ID: 24321699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced complexity of force and muscle activity during low level isometric contractions of the ankle in diabetic individuals.
    Suda EY; Madeleine P; Hirata RP; Samani A; Kawamura TT; Sacco IC
    Clin Biomech (Bristol, Avon); 2017 Feb; 42():38-46. PubMed ID: 28088014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations in Neural Control of Constant Isometric Contraction with the Size of Error Feedback.
    Hwang IS; Lin YT; Huang WM; Yang ZR; Hu CL; Chen YC
    PLoS One; 2017; 12(1):e0170824. PubMed ID: 28125658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Task goal and grip force dynamics.
    Jordan K; Newell KM
    Exp Brain Res; 2004 Jun; 156(4):451-7. PubMed ID: 14968275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.