These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 19544070)

  • 1. Distribution and phylogeny of the blue light receptors aureochromes in eukaryotes.
    Ishikawa M; Takahashi F; Nozaki H; Nagasato C; Motomura T; Kataoka H
    Planta; 2009 Aug; 230(3):543-52. PubMed ID: 19544070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blue-light-regulated transcription factor, Aureochrome, in photosynthetic stramenopiles.
    Takahashi F
    J Plant Res; 2016 Mar; 129(2):189-97. PubMed ID: 26781435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation, expression, and characterization of blue light receptor AUREOCHROME gene from Saccharina japonica (Laminariales, Phaeophyceae).
    Deng Y; Yao J; Fu G; Guo H; Duan D
    Mar Biotechnol (NY); 2014 Apr; 16(2):135-43. PubMed ID: 24052494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AUREOCHROME, a photoreceptor required for photomorphogenesis in stramenopiles.
    Takahashi F; Yamagata D; Ishikawa M; Fukamatsu Y; Ogura Y; Kasahara M; Kiyosue T; Kikuyama M; Wada M; Kataoka H
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19625-30. PubMed ID: 18003911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aureochromes - Blue Light Receptors.
    Matiiv AB; Chekunova EM
    Biochemistry (Mosc); 2018 Jun; 83(6):662-673. PubMed ID: 30195323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blue light-induced conformational changes in a light-regulated transcription factor, aureochrome-1.
    Hisatomi O; Takeuchi K; Zikihara K; Ookubo Y; Nakatani Y; Takahashi F; Tokutomi S; Kataoka H
    Plant Cell Physiol; 2013 Jan; 54(1):93-106. PubMed ID: 23220692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An update on aureochromes: Phylogeny - mechanism - function.
    Kroth PG; Wilhelm C; Kottke T
    J Plant Physiol; 2017 Oct; 217():20-26. PubMed ID: 28797596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blue light-induced dimerization of monomeric aureochrome-1 enhances its affinity for the target sequence.
    Hisatomi O; Nakatani Y; Takeuchi K; Takahashi F; Kataoka H
    J Biol Chem; 2014 Jun; 289(25):17379-91. PubMed ID: 24790107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-Wide Identification and Analysis of the Aureochrome Gene Family in
    Wu Y; Zhang P; Liang Z; Yuan Y; Duan M; Liu Y; Zhang D; Liu F
    Plants (Basel); 2022 Aug; 11(16):. PubMed ID: 36015392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of three LOV blue light receptor families in green plants and photosynthetic stramenopiles: phototropin, ZTL/FKF1/LKP2 and aureochrome.
    Suetsugu N; Wada M
    Plant Cell Physiol; 2013 Jan; 54(1):8-23. PubMed ID: 23220691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Mechanism of Photozipper, a Light-Regulated Dimerizing Module Consisting of the bZIP and LOV Domains of Aureochrome-1.
    Nakatani Y; Hisatomi O
    Biochemistry; 2015 Jun; 54(21):3302-13. PubMed ID: 25932652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-Resolved Detection of Light-Induced Dimerization of Monomeric Aureochrome-1 and Change in Affinity for DNA.
    Akiyama Y; Nakasone Y; Nakatani Y; Hisatomi O; Terazima M
    J Phys Chem B; 2016 Aug; 120(30):7360-70. PubMed ID: 27404115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blue-light-induced unfolding of the Jα helix allows for the dimerization of aureochrome-LOV from the diatom Phaeodactylum tricornutum.
    Herman E; Sachse M; Kroth PG; Kottke T
    Biochemistry; 2013 May; 52(18):3094-101. PubMed ID: 23621750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of a Native-like Aureochrome 1a LOV Domain Dimer from Phaeodactylum tricornutum.
    Banerjee A; Herman E; Kottke T; Essen LO
    Structure; 2016 Jan; 24(1):171-178. PubMed ID: 26688213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution and phylogeny of light-oxygen-voltage-blue-light-signaling proteins in the three kingdoms of life.
    Krauss U; Minh BQ; Losi A; Gärtner W; Eggert T; von Haeseler A; Jaeger KE
    J Bacteriol; 2009 Dec; 191(23):7234-42. PubMed ID: 19783626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing Combinatorial Diversity of Aureochrome Basic Leucine Zippers through Genome-Wide Screening.
    Khamaru M; Nath D; Mitra D; Roy S
    Cells Tissues Organs; 2024; 213(2):133-146. PubMed ID: 36261029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A light-regulated bZIP module, photozipper, induces the binding of fused proteins to the target DNA sequence in a blue light-dependent manner.
    Hisatomi O; Furuya K
    Photochem Photobiol Sci; 2015 Nov; 14(11):1998-2006. PubMed ID: 26441326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allosteric communication between DNA-binding and light-responsive domains of diatom class I aureochromes.
    Banerjee A; Herman E; Serif M; Maestre-Reyna M; Hepp S; Pokorny R; Kroth PG; Essen LO; Kottke T
    Nucleic Acids Res; 2016 Jul; 44(12):5957-70. PubMed ID: 27179025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analyses of the equilibria among DNA complexes of a blue-light-regulated bZIP module, Photozipper.
    Nakatani Y; Hisatomi O
    Biophys Physicobiol; 2018; 15():8-17. PubMed ID: 29450110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A eukaryotic LOV-histidine kinase with circadian clock function in the picoalga Ostreococcus.
    Djouani-Tahri el-B; Christie JM; Sanchez-Ferandin S; Sanchez F; Bouget FY; Corellou F
    Plant J; 2011 Feb; 65(4):578-88. PubMed ID: 21235644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.