These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 19544198)

  • 1. The physicochemical basis of QSARs for baseline toxicity.
    Mackay D; Arnot JA; Petkova EP; Wallace KB; Call DJ; Brooke LT; Veith GD
    SAR QSAR Environ Res; 2009; 20(3-4):393-414. PubMed ID: 19544198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling acute oral mammalian toxicity. 1. Definition of a quantifiable baseline effect.
    Koleva YK; Cronin MT; Madden JC; Schwöbel JA
    Toxicol In Vitro; 2011 Oct; 25(7):1281-93. PubMed ID: 21557997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of critical body residue QSARs for predicting organic chemical toxicity to aquatic organisms.
    Barron MG; Anderson MJ; Lipton J; Dixon DG
    SAR QSAR Environ Res; 1997; 6(1-2):47-62. PubMed ID: 9241865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QSARs for aquatic toxicity: celebrating, extending and displaying the pioneering contributions of Ferguson, Konemann and Veith.
    Mackay D; Arnot JA; Celsie A; Orazietti A; Parnis JM
    SAR QSAR Environ Res; 2014; 25(5):343-55. PubMed ID: 24762009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QSAR and chemometric approaches for setting water quality objectives for dangerous chemicals.
    Vighi M; Gramatica P; Consolaro F; Todeschini R
    Ecotoxicol Environ Saf; 2001 Jul; 49(3):206-20. PubMed ID: 11440473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General baseline toxicity QSAR for nonpolar, polar and ionisable chemicals and their mixtures in the bioluminescence inhibition assay with Aliivibrio fischeri.
    Escher BI; Baumer A; Bittermann K; Henneberger L; König M; Kühnert C; Klüver N
    Environ Sci Process Impacts; 2017 Mar; 19(3):414-428. PubMed ID: 28197603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discriminating toxicant classes by mode of action: 4. Baseline and excess toxicity.
    Nendza M; Müller M; Wenzel A
    SAR QSAR Environ Res; 2014; 25(5):393-405. PubMed ID: 24773472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A baseline inhalation toxicity model for narcosis in mammals.
    Veith GD; Petkova EP; Wallace KB
    SAR QSAR Environ Res; 2009 Jul; 20(5-6):567-78. PubMed ID: 19916115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.
    Katagi T
    Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid.
    Cleuvers M
    Ecotoxicol Environ Saf; 2004 Nov; 59(3):309-15. PubMed ID: 15388270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Qsar investigation of a large data set for fish, algae and Daphnia toxicity.
    Lessigiarska I; Wortha AP; Sokull-Klüttgen B; Jeram S; Dearden JC; Netzeva TI; Cronin MT
    SAR QSAR Environ Res; 2004; 15(5-6):413-31. PubMed ID: 15669699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of QSARs in risk management of existing chemicals.
    Verhaar HJ; van Leeuwen CJ; Bol J; Hermens JL
    SAR QSAR Environ Res; 1994; 2(1-2):39-58. PubMed ID: 8790639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ECOSAR model performance with a large test set of industrial chemicals.
    Reuschenbach P; Silvani M; Dammann M; Warnecke D; Knacker T
    Chemosphere; 2008 May; 71(10):1986-95. PubMed ID: 18262586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Narcosis due to environmental pollutants in aquatic organisms: residue-based toxicity, mechanisms, and membrane burdens.
    van Wezel AP; Opperhuizen A
    Crit Rev Toxicol; 1995; 25(3):255-79. PubMed ID: 7576154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of quantitative structure--activity relationships for assessing the aquatic toxicity of phthalate esters.
    Parkerton TF; Konkel WJ
    Ecotoxicol Environ Saf; 2000 Jan; 45(1):61-78. PubMed ID: 10677269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationships between exposure and dose in aquatic toxicity tests for organic chemicals.
    Mackay D; McCarty LS; Arnot JA
    Environ Toxicol Chem; 2014 Sep; 33(9):2038-46. PubMed ID: 24889496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxic equivalent concentrations (TEQs) for baseline toxicity and specific modes of action as a tool to improve interpretation of ecotoxicity testing of environmental samples.
    Escher BI; Bramaz N; Mueller JF; Quayle P; Rutishauser S; Vermeirssen EL
    J Environ Monit; 2008 May; 10(5):612-21. PubMed ID: 18449398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NTP carcinogenesis studies of 2,2-bis(bromomethyl)-1,3-propanediol, nitromethane, and 1,2,3-trichloropropane (cas nos. 3296-90-0, 75-52-5, and 96-18-4) in guppies (Poecilia reticulata) and medaka (Oryzias latipes) (Waterborne Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 2005 Oct; (528):1-190. PubMed ID: 16362062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using chemical categories to fill data gaps in hazard assessment.
    van Leeuwen K; Schultz TW; Henry T; Diderich B; Veith GD
    SAR QSAR Environ Res; 2009; 20(3-4):207-20. PubMed ID: 19544189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.