These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19544373)

  • 1. Vital microscopic analysis of polymeric micelle extravasation from tumor vessels: macromolecular delivery according to tumor vascular growth stage.
    Hori K; Nishihara M; Yokoyama M
    J Pharm Sci; 2010 Jan; 99(1):549-62. PubMed ID: 19544373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The combretastatin derivative (Cderiv), a vascular disrupting agent, enables polymeric nanomicelles to accumulate in microtumors.
    Hori K; Nishihara M; Shiraishi K; Yokoyama M
    J Pharm Sci; 2010 Jun; 99(6):2914-25. PubMed ID: 20039393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of apparent tumor vascular permeability from multiphoton fluorescence microscopic images of P22 rat sarcomas in vivo.
    Reyes-Aldasoro CC; Wilson I; Prise VE; Barber PR; Ameer-Beg M; Vojnovic B; Cunningham VJ; Tozer GM
    Microcirculation; 2008 Jan; 15(1):65-79. PubMed ID: 17952797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines.
    Greish K
    J Drug Target; 2007; 15(7-8):457-64. PubMed ID: 17671892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of organic solvents on drug incorporation into polymeric carriers and morphological analyses of drug-incorporated polymeric micelles.
    Harada Y; Yamamoto T; Sakai M; Saiki T; Kawano K; Maitani Y; Yokoyama M
    Int J Pharm; 2011 Feb; 404(1-2):271-80. PubMed ID: 21093556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting.
    Greish K
    Methods Mol Biol; 2010; 624():25-37. PubMed ID: 20217587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histological study on side effects and tumor targeting of a block copolymer micelle on rats.
    Kawaguchi T; Honda T; Nishihara M; Yamamoto T; Yokoyama M
    J Control Release; 2009 Jun; 136(3):240-6. PubMed ID: 19248812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymeric micelles and nanoemulsions as tumor-targeted drug carriers: Insight through intravital imaging.
    Rapoport N; Gupta R; Kim YS; O'Neill BE
    J Control Release; 2015 May; 206():153-60. PubMed ID: 25776738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Tumor microcirculation and selective enhancement of drug delivery--clinical applications based on pathophysiological experiments].
    Sato H; Hori K; Sugiyama K; Tanda S; Sato Y
    Gan To Kagaku Ryoho; 2000 Jul; 27(8):1191-200. PubMed ID: 10945016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymeric micelles for enhanced lymphatic drug delivery to treat metastatic tumors.
    Qin L; Zhang F; Lu X; Wei X; Wang J; Fang X; Si D; Wang Y; Zhang C; Yang R; Liu C; Liang W
    J Control Release; 2013 Oct; 171(2):133-42. PubMed ID: 23863448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls.
    Nakamura H; Fang J; Maeda H
    Expert Opin Drug Deliv; 2015 Jan; 12(1):53-64. PubMed ID: 25425260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving anti-tumor activity with polymeric micelles entrapping paclitaxel in pulmonary carcinoma.
    Gong C; Xie Y; Wu Q; Wang Y; Deng S; Xiong D; Liu L; Xiang M; Qian Z; Wei Y
    Nanoscale; 2012 Sep; 4(19):6004-17. PubMed ID: 22910790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doxorubicin and lapatinib combination nanomedicine for treating resistant breast cancer.
    Wang H; Li F; Du C; Wang H; Mahato RI; Huang Y
    Mol Pharm; 2014 Aug; 11(8):2600-11. PubMed ID: 24405470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PEG-PCL based micelle hydrogels as oral docetaxel delivery systems for breast cancer therapy.
    Wang Y; Chen L; Tan L; Zhao Q; Luo F; Wei Y; Qian Z
    Biomaterials; 2014 Aug; 35(25):6972-85. PubMed ID: 24836952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathways of macromolecular tracer transport across venules and small veins. Structural basis for the hyperpermeability of tumor blood vessels.
    Kohn S; Nagy JA; Dvorak HF; Dvorak AM
    Lab Invest; 1992 Nov; 67(5):596-607. PubMed ID: 1279271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules.
    Dvorak HF; Nagy JA; Dvorak JT; Dvorak AM
    Am J Pathol; 1988 Oct; 133(1):95-109. PubMed ID: 2459969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conjugation of arginine-glycine-aspartic acid peptides to poly(ethylene oxide)-b-poly(epsilon-caprolactone) micelles for enhanced intracellular drug delivery to metastatic tumor cells.
    Xiong XB; Mahmud A; Uludağ H; Lavasanifar A
    Biomacromolecules; 2007 Mar; 8(3):874-84. PubMed ID: 17315946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of pH-sensitive positively charged polymeric micelles for protein delivery.
    Gao GH; Park MJ; Li Y; Im GH; Kim JH; Kim HN; Lee JW; Jeon P; Bang OY; Lee JH; Lee DS
    Biomaterials; 2012 Dec; 33(35):9157-64. PubMed ID: 23000386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of the tumor microenvironment and nanomedicine properties simultaneously to improve tumor therapy.
    Zhang B; Shi W; Jiang T; Wang L; Mei H; Lu H; Hu Y; Pang Z
    Oncotarget; 2016 Sep; 7(38):62607-62618. PubMed ID: 27566585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [On the angio-architecture of intramuscularly implanted Yoshida-sarcoma in untreated and lithium carmine-treated rats (author's transl)].
    Rolle DJ; Kretschmar KH
    Zentralbl Allg Pathol; 1976; 120(5):383-90. PubMed ID: 1014966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.