These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 19544568)
1. X-ray crystallographic studies of RNase A variants engineered at the most destabilizing positions of the main hydrophobic core: further insight into protein stability. Kurpiewska K; Font J; Ribó M; Vilanova M; Lewiński K Proteins; 2009 Nov; 77(3):658-69. PubMed ID: 19544568 [TBL] [Abstract][Full Text] [Related]
2. Structural characterization of an analog of the major rate-determining disulfide folding intermediate of bovine pancreatic ribonuclease A. Laity JH; Lester CC; Shimotakahara S; Zimmerman DE; Montelione GT; Scheraga HA Biochemistry; 1997 Oct; 36(42):12683-99. PubMed ID: 9335525 [TBL] [Abstract][Full Text] [Related]
3. NMR structural analysis of an analog of an intermediate formed in the rate-determining step of one pathway in the oxidative folding of bovine pancreatic ribonuclease A: automated analysis of 1H, 13C, and 15N resonance assignments for wild-type and [C65S, C72S] mutant forms. Shimotakahara S; Rios CB; Laity JH; Zimmerman DE; Scheraga HA; Montelione GT Biochemistry; 1997 Jun; 36(23):6915-29. PubMed ID: 9188686 [TBL] [Abstract][Full Text] [Related]
4. Valine 108, a chain-folding initiation site-belonging residue, crucial for the ribonuclease A stability. Coll MG; Protasevich II; Torrent J; Ribó M; Lobachov VM; Makarov AA; Vilanova M Biochem Biophys Res Commun; 1999 Nov; 265(2):356-60. PubMed ID: 10558871 [TBL] [Abstract][Full Text] [Related]
5. Minimization of cavity size ensures protein stability and folding: structures of Phe46-replaced bovine pancreatic RNase A. Kadonosono T; Chatani E; Hayashi R; Moriyama H; Ueki T Biochemistry; 2003 Sep; 42(36):10651-8. PubMed ID: 12962489 [TBL] [Abstract][Full Text] [Related]
6. Mapping the stability clusters in bovine pancreatic ribonuclease A. Vilà R; Benito A; Ribó M; Vilanova M Biopolymers; 2009 Dec; 91(12):1038-47. PubMed ID: 19373927 [TBL] [Abstract][Full Text] [Related]
7. Kinetic and thermodynamic studies of the folding/unfolding of a tryptophan-containing mutant of ribonuclease A. Sendak RA; Rothwarf DM; Wedemeyer WJ; Houry WA; Scheraga HA Biochemistry; 1996 Oct; 35(39):12978-92. PubMed ID: 8841145 [TBL] [Abstract][Full Text] [Related]
8. Pressure- and temperature-induced unfolding studies: thermodynamics of core hydrophobicity and packing of ribonuclease A. Font J; Benito A; Torrent J; Lange R; Ribó M; Vilanova M Biol Chem; 2006 Mar; 387(3):285-96. PubMed ID: 16542150 [TBL] [Abstract][Full Text] [Related]
9. Toward an antitumor form of bovine pancreatic ribonuclease: the crystal structure of three noncovalent dimeric mutants. Merlino A; Russo Krauss I; Perillo M; Mattia CA; Ercole C; Picone D; Vergara A; Sica F Biopolymers; 2009 Dec; 91(12):1029-37. PubMed ID: 19280639 [TBL] [Abstract][Full Text] [Related]
10. Tyrosyl interactions in the folding and unfolding of bovine pancreatic ribonuclease A: a study of tyrosine-to-phenylalanine mutants. Juminaga D; Wedemeyer WJ; Garduño-Júarez R; McDonald MA; Scheraga HA Biochemistry; 1997 Aug; 36(33):10131-45. PubMed ID: 9254610 [TBL] [Abstract][Full Text] [Related]
11. The swapping of terminal arms in ribonucleases: comparison of the solution structure of monomeric bovine seminal and pancreatic ribonucleases. Avitabile F; Alfano C; Spadaccini R; Crescenzi O; D'Ursi AM; D'Alessio G; Tancredi T; Picone D Biochemistry; 2003 Jul; 42(29):8704-11. PubMed ID: 12873130 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional structure of a human pancreatic ribonuclease variant, a step forward in the design of cytotoxic ribonucleases. Pous J; Canals A; Terzyan SS; Guasch A; Benito A; Ribó M; Vilanova M; Coll M J Mol Biol; 2000 Oct; 303(1):49-60. PubMed ID: 11021969 [TBL] [Abstract][Full Text] [Related]
13. Insight into ribonuclease A domain swapping by molecular dynamics unfolding simulations. Esposito L; Daggett V Biochemistry; 2005 Mar; 44(9):3358-68. PubMed ID: 15736946 [TBL] [Abstract][Full Text] [Related]
14. Origin of dimeric structure in the ribonuclease superfamily. Ciglic MI; Jackson PJ; Raillard SA; Haugg M; Jermann TM; Opitz JG; Trabesinger-Rüf N; Benner SA Biochemistry; 1998 Mar; 37(12):4008-22. PubMed ID: 9521722 [TBL] [Abstract][Full Text] [Related]
15. Folding and unfolding kinetics of the proline-to-alanine mutants of bovine pancreatic ribonuclease A. Dodge RW; Scheraga HA Biochemistry; 1996 Feb; 35(5):1548-59. PubMed ID: 8634286 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic effects of proline introduction on protein stability. Prajapati RS; Das M; Sreeramulu S; Sirajuddin M; Srinivasan S; Krishnamurthy V; Ranjani R; Ramakrishnan C; Varadarajan R Proteins; 2007 Feb; 66(2):480-91. PubMed ID: 17034035 [TBL] [Abstract][Full Text] [Related]
17. Hydrophobic core substitutions in calbindin D9k: effects on stability and structure. Julenius K; Thulin E; Linse S; Finn BE Biochemistry; 1998 Jun; 37(25):8915-25. PubMed ID: 9636033 [TBL] [Abstract][Full Text] [Related]
18. Temperature-induced unfolding of ribonuclease A embedded in spherical polyelectrolyte brushes. Wittemann A; Ballauff M Macromol Biosci; 2005 Jan; 5(1):13-20. PubMed ID: 15633159 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of ribonuclease inhibition by ribonuclease inhibitor protein based on the crystal structure of its complex with ribonuclease A. Kobe B; Deisenhofer J J Mol Biol; 1996 Dec; 264(5):1028-43. PubMed ID: 9000628 [TBL] [Abstract][Full Text] [Related]
20. Attempts to delineate the relative contributions of changes in hydrophobicity and packing to changes in stability of ribonuclease S mutants. Das M; Rao BV; Ghosh S; Varadarajan R Biochemistry; 2005 Apr; 44(15):5923-30. PubMed ID: 15823052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]