BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 19544747)

  • 1. Effects of skilled training on sleep slow wave activity and cortical gene expression in the rat.
    Hanlon EC; Faraguna U; Vyazovskiy VV; Tononi G; Cirelli C
    Sleep; 2009 Jun; 32(6):719-29. PubMed ID: 19544747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleepy synapses. Commentary on Hanlon et al. "Effects of skilled training on sleep slow wave activity and cortical gene expression in the rat" Sleep 2009;32:719-729.
    Szymusiak R
    Sleep; 2009 Jun; 32(6):713-4. PubMed ID: 19544744
    [No Abstract]   [Full Text] [Related]  

  • 3. Region and task-specific activation of Arc in primary motor cortex of rats following motor skill learning.
    Hosp JA; Mann S; Wegenast-Braun BM; Calhoun ME; Luft AR
    Neuroscience; 2013 Oct; 250():557-64. PubMed ID: 23876329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acquisition of a novel behavior induces higher levels of Arc mRNA than does overtrained performance.
    Kelly MP; Deadwyler SA
    Neuroscience; 2002; 110(4):617-26. PubMed ID: 11934470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep.
    Faraguna U; Vyazovskiy VV; Nelson AB; Tononi G; Cirelli C
    J Neurosci; 2008 Apr; 28(15):4088-95. PubMed ID: 18400908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep.
    Rodriguez AV; Funk CM; Vyazovskiy VV; Nir Y; Tononi G; Cirelli C
    J Neurosci; 2016 Dec; 36(49):12436-12447. PubMed ID: 27927960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential gene expression in the rat hippocampus during learning of an operant conditioning task.
    Rapanelli M; Frick LR; Zanutto BS
    Neuroscience; 2009 Nov; 163(4):1031-8. PubMed ID: 19632308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves.
    Esser SK; Hill SL; Tononi G
    Sleep; 2007 Dec; 30(12):1617-30. PubMed ID: 18246972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling between motor cortex and striatum increases during sleep over long-term skill learning.
    Lemke SM; Ramanathan DS; Darevksy D; Egert D; Berke JD; Ganguly K
    Elife; 2021 Sep; 10():. PubMed ID: 34505576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity.
    Huber R; Ghilardi MF; Massimini M; Ferrarelli F; Riedner BA; Peterson MJ; Tononi G
    Nat Neurosci; 2006 Sep; 9(9):1169-76. PubMed ID: 16936722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TMS-induced cortical potentiation during wakefulness locally increases slow wave activity during sleep.
    Huber R; Esser SK; Ferrarelli F; Massimini M; Peterson MJ; Tononi G
    PLoS One; 2007 Mar; 2(3):e276. PubMed ID: 17342210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploratory behavior, cortical BDNF expression, and sleep homeostasis.
    Huber R; Tononi G; Cirelli C
    Sleep; 2007 Feb; 30(2):129-39. PubMed ID: 17326538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sleep homeostasis and cortical synchronization: II. A local field potential study of sleep slow waves in the rat.
    Vyazovskiy VV; Riedner BA; Cirelli C; Tononi G
    Sleep; 2007 Dec; 30(12):1631-42. PubMed ID: 18246973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor sequence learning increases sleep spindles and fast frequencies in post-training sleep.
    Morin A; Doyon J; Dostie V; Barakat M; Hadj Tahar A; Korman M; Benali H; Karni A; Ungerleider LG; Carrier J
    Sleep; 2008 Aug; 31(8):1149-56. PubMed ID: 18714787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical zeta-inhibitory peptide injection reduces local sleep need.
    Carroll CM; Hsiang H; Snyder S; Forsberg J; Dash MB
    Sleep; 2019 May; 42(5):. PubMed ID: 30722054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep slow-wave activity reveals developmental changes in experience-dependent plasticity.
    Wilhelm I; Kurth S; Ringli M; Mouthon AL; Buchmann A; Geiger A; Jenni OG; Huber R
    J Neurosci; 2014 Sep; 34(37):12568-75. PubMed ID: 25209294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of cortical movement representations to motor experience: evidence that skill learning but not strength training induces cortical reorganization.
    Remple MS; Bruneau RM; VandenBerg PM; Goertzen C; Kleim JA
    Behav Brain Res; 2001 Sep; 123(2):133-41. PubMed ID: 11399326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans.
    Riedner BA; Vyazovskiy VV; Huber R; Massimini M; Esser S; Murphy M; Tononi G
    Sleep; 2007 Dec; 30(12):1643-57. PubMed ID: 18246974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anesthetized Long Evans rats show similar protein expression and long-term potentiation as Fischer 344 rats but reduced short-term potentiation in motor cortex.
    Wawryko P; Ward NL; Whishaw IQ; Ivanco TL
    Brain Res; 2004 Dec; 1029(1):1-10. PubMed ID: 15533310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infraslow coordination of slow wave activity through altered neuronal synchrony.
    Dash MB
    Sleep; 2019 Dec; 42(12):. PubMed ID: 31353415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.