BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19544844)

  • 1. Linking the diffusion of water in compacted clays at two different time scales: tracer through-diffusion and quasielastic neutron scattering.
    González Sánchez F; Gimmi T; Jurányi F; Van Loon L; Diamond LW
    Environ Sci Technol; 2009 May; 43(10):3487-93. PubMed ID: 19544844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translational diffusion of water and its dependence on temperature in charged and uncharged clays: A neutron scattering study.
    González Sánchez F; Jurányi F; Gimmi T; Van Loon L; Unruh T; Diamond LW
    J Chem Phys; 2008 Nov; 129(17):174706. PubMed ID: 19045369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water dynamics in hectorite clays: influence of temperature studied by coupling neutron spin echo and molecular dynamics.
    Marry V; Dubois E; Malikova N; Durand-Vidal S; Longeville S; Breu J
    Environ Sci Technol; 2011 Apr; 45(7):2850-5. PubMed ID: 21381672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of electrochemical properties of compacted clays by concentration potential method.
    Yaroshchuk A; Glaus MA; Van Loon LR
    J Colloid Interface Sci; 2007 May; 309(2):262-71. PubMed ID: 17346739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion of water in clays on the microscopic scale: modeling and experiment.
    Malikova N; Cadène A; Marry V; Dubois E; Turq P
    J Phys Chem B; 2006 Feb; 110(7):3206-14. PubMed ID: 16494330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How mobile are sorbed cations in clays and clay rocks?
    Gimmi T; Kosakowski G
    Environ Sci Technol; 2011 Feb; 45(4):1443-9. PubMed ID: 21261248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cation Diffusion in Compacted Clay: A Pore-Scale View.
    Yang Y; Wang M
    Environ Sci Technol; 2019 Feb; 53(4):1976-1984. PubMed ID: 30652850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations.
    Qvist J; Schober H; Halle B
    J Chem Phys; 2011 Apr; 134(14):144508. PubMed ID: 21495765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement and modelling of reactive transport in geological barriers for nuclear waste containment.
    Xiong Q; Joseph C; Schmeide K; Jivkov AP
    Phys Chem Chem Phys; 2015 Nov; 17(45):30577-89. PubMed ID: 26524292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significance of the long-chain organic cation structure in the sorption of the penconazole and metalaxyl fungicides by organo clays.
    Rodríguez-Cruz MS; Andrades MS; Sánchez-Martín MJ
    J Hazard Mater; 2008 Dec; 160(1):200-7. PubMed ID: 18400383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion of 22Na and 85Sr in montmorillonite: evidence of interlayer diffusion being the dominant pathway at high compaction.
    Glaus MA; Baeyens B; Bradbury MH; Jakob A; Van Loon LR; Yaroshchuk A
    Environ Sci Technol; 2007 Jan; 41(2):478-85. PubMed ID: 17310710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved interpretation of in-diffusion measurements with confined swelling clays.
    Yaroshchuk AE; Van Loon LR
    J Contam Hydrol; 2008 Apr; 97(1-2):67-74. PubMed ID: 18291558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of a protein and its surrounding environment: a quasielastic neutron scattering study of myoglobin in water and glycerol mixtures.
    Jansson H; Kargl F; Fernandez-Alonso F; Swenson J
    J Chem Phys; 2009 May; 130(20):205101. PubMed ID: 19485482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption of organic cations to phyllosilicate clay minerals: CEC-normalization, salt dependency, and the role of electrostatic and hydrophobic effects.
    Droge ST; Goss KU
    Environ Sci Technol; 2013 Dec; 47(24):14224-32. PubMed ID: 24266737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aqueous suspensions of natural swelling clay minerals. 1. Structure and electrostatic interactions.
    Paineau E; Bihannic I; Baravian C; Philippe AM; Davidson P; Levitz P; Funari SS; Rochas C; Michot LJ
    Langmuir; 2011 May; 27(9):5562-73. PubMed ID: 21476528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between viruses and clays in static and dynamic batch systems.
    Syngouna VI; Chrysikopoulos CV
    Environ Sci Technol; 2010 Jun; 44(12):4539-44. PubMed ID: 20496906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multiscale approach to ion diffusion in clays: building a two-state diffusion-reaction scheme from microscopic dynamics.
    Rotenberg B; Marry V; Dufrêche JF; Giffaut E; Turq P
    J Colloid Interface Sci; 2007 May; 309(2):289-95. PubMed ID: 17349652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling diffusion and adsorption in compacted bentonite: a critical review.
    Bourg IC; Bourg AC; Sposito G
    J Contam Hydrol; 2003 Mar; 61(1-4):293-302. PubMed ID: 12598111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ion diffusion model in semi-permeable clay materials.
    Liu C
    Environ Sci Technol; 2007 Aug; 41(15):5403-9. PubMed ID: 17822109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neutron scattering study on dynamics of water molecules in MCM-41. 2. Determination of translational diffusion coefficient.
    Takahara S; Sumiyama N; Kittaka S; Yamaguchi T; Bellissent-Funel MC
    J Phys Chem B; 2005 Jun; 109(22):11231-9. PubMed ID: 16852371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.