BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 19544854)

  • 21. Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils.
    Fismes J; Perrin-Ganier C; Empereur-Bissonnet P; Morel JL
    J Environ Qual; 2002; 31(5):1649-56. PubMed ID: 12371182
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Uptake, translocation, and risk assessment of PAHs in contaminated soil-air-vegetable systems based on a field simulation experiment.
    Jia J; Bi C; Jin X; Zeng Y; Deng L; Wang X; Chen Z
    Environ Pollut; 2021 Feb; 271():116361. PubMed ID: 33388677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PFCA uptake and translocation in dominant wheat species (Triticum aestivum L.).
    Zhao H; Guan Y; Qu B
    Int J Phytoremediation; 2018 Jan; 20(1):68-74. PubMed ID: 28598222
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Prediction of PAHs uptake by ryegrass with a partition-limited model].
    Yang ZY; Zhu LZ
    Huan Jing Ke Xue; 2006 Jun; 27(6):1212-6. PubMed ID: 16921964
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Uptake and translocation of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by maize from soil irrigated with wastewater.
    Zhang S; Yao H; Lu Y; Yu X; Wang J; Sun S; Liu M; Li D; Li YF; Zhang D
    Sci Rep; 2017 Sep; 7(1):12165. PubMed ID: 28939846
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Presence, distribution and risk assessment of polycyclic aromatic hydrocarbons in rice-wheat continuous cropping soils close to five industrial parks of Suzhou, China.
    Li Y; Long L; Ge J; Yang LX; Cheng JJ; Sun LX; Lu C; Yu XY
    Chemosphere; 2017 Oct; 184():753-761. PubMed ID: 28641227
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of catclaw Mimosa monancistra on the dissipation of soil PAHs.
    Alvarez-Bernal D; Contreras-Ramos S; Marsch R; Dendooven L
    Int J Phytoremediation; 2007; 9(2):79-90. PubMed ID: 18246717
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variation in foliar uptake of polycyclic aromatic hydrocarbons in six varieties of winter wheat.
    Shi T; Tian K; Bao H; Liu X; Wu F
    Environ Sci Pollut Res Int; 2017 Dec; 24(35):27215-27224. PubMed ID: 28965195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical-assisted phytoremediation of CD-PAHs contaminated soils using Solanum nigrum L.
    Yang C; Zhou Q; Wei S; Hu Y; Bao Y
    Int J Phytoremediation; 2011 Sep; 13(8):818-33. PubMed ID: 21972521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distribution and transfer rules of polycyclic aromatic hydrocarbons in soil-wheat ecosystems in China.
    Qin G; Su C; Qiao X; Liang R; Jiang Y; Li F
    Environ Monit Assess; 2023 Nov; 195(12):1446. PubMed ID: 37946068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation.
    Khan S; Aijun L; Zhang S; Hu Q; Zhu YG
    J Hazard Mater; 2008 Apr; 152(2):506-15. PubMed ID: 17706349
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Uptake of polycyclic aromatic hydrocarbons by Trifolium pretense L. from water in the presence of a nonionic surfactant.
    Gao Y; Shen Q; Ling W; Ren L
    Chemosphere; 2008 Jun; 72(4):636-43. PubMed ID: 18387650
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potential of wheat (Triticum aestivum L.) and pea (Pisum sativum) for remediation of soils contaminated with bromides and PAHs.
    Shtangeeva I; Perämäki P; Niemelä M; Kurashov E; Krylova Y
    Int J Phytoremediation; 2018 May; 20(6):560-566. PubMed ID: 29688054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Uptake of polycyclic aromatic hydrocarbons by maize plants.
    Lin H; Tao S; Zuo Q; Coveney RM
    Environ Pollut; 2007 Jul; 148(2):614-9. PubMed ID: 17254679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Characterization comparison of polycyclic aromatic hydrocarbon uptake by roots of different crops].
    Liang X; Zhan XH; Zhou LX
    Huan Jing Ke Xue; 2012 Jul; 33(7):2516-21. PubMed ID: 23002636
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Uptake and distribution of phenanthrene and pyrene in roots and shoots of maize (Zea mays L.).
    Houshani M; Salehi-Lisar SY; Motafakkerazad R; Movafeghi A
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):9938-9944. PubMed ID: 30739292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacteria from wheat and cucurbit plant roots metabolize PAHs and aromatic root exudates: Implications for rhizodegradation.
    Ely CS; Smets BF
    Int J Phytoremediation; 2017 Oct; 19(10):877-883. PubMed ID: 28318300
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Field study on the uptake and translocation of PBDEs by wheat (Triticum aestivum L.) in soils amended with sewage sludge.
    Li H; Qu R; Yan L; Guo W; Ma Y
    Chemosphere; 2015 Mar; 123():87-92. PubMed ID: 25563166
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterisation and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soils and plants around e-waste dismantling sites in southern China.
    Wang Y; He J; Wang S; Luo C; Yin H; Zhang G
    Environ Sci Pollut Res Int; 2017 Oct; 24(28):22173-22182. PubMed ID: 28791539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil.
    Ingrid L; Lounès-Hadj Sahraoui A; Frédéric L; Yolande D; Joël F
    Environ Pollut; 2016 Jun; 213():549-560. PubMed ID: 26995451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.