BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 19544878)

  • 1. Surface association of motile bacteria at granular porous media interfaces.
    Kusy K; Ford RM
    Environ Sci Technol; 2009 May; 43(10):3712-9. PubMed ID: 19544878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulations derived from direct observations of individual bacteria inform macroscopic migration models at granular porous media interfaces.
    Kusy K; Ford RM
    Environ Sci Technol; 2007 Sep; 41(18):6403-9. PubMed ID: 17948786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Idling time of swimming bacteria near particulate surfaces contributes to apparent adsorption coefficients at the macroscopic scale under static conditions.
    Liu J; Ford RM
    Environ Sci Technol; 2009 Dec; 43(23):8874-80. PubMed ID: 19943660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Transport of Chemotactic Bacteria in Granular Media with Distributed Contaminant Sources.
    Adadevoh JST; Ostvar S; Wood B; Ford RM
    Environ Sci Technol; 2017 Dec; 51(24):14192-14198. PubMed ID: 29164871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of deacetylated gellan gum (Gelrite) for the production of sulphamethizole containing beads.
    Quigley KJ; Deasy PB
    J Microencapsul; 1992; 9(1):1-7. PubMed ID: 1613639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between motile Escherichia coli and glass in media with various ionic strengths, as observed with a three-dimensional-tracking microscope.
    Vigeant MA; Ford RM
    Appl Environ Microbiol; 1997 Sep; 63(9):3474-9. PubMed ID: 9292997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Idling time of motile bacteria contributes to retardation and dispersion in sand porous medium.
    Liu J; Ford RM; Smith JA
    Environ Sci Technol; 2011 May; 45(9):3945-51. PubMed ID: 21456575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of molecular scale roughness of glass beads on colloidal and bacterial deposition.
    Shellenberger K; Logan BE
    Environ Sci Technol; 2002 Jan; 36(2):184-9. PubMed ID: 11827052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial mobility and motility in porous media mimicked by microspheres.
    Shrestha D; Ou J; Rogers A; Jereb A; Okyere D; Chen J; Wang Y
    Colloids Surf B Biointerfaces; 2023 Feb; 222():113128. PubMed ID: 36630770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motility of Pseudomonas aeruginosa in saturated granular media as affected by chemoattractant.
    Chen J; Jin Y
    J Contam Hydrol; 2011 Sep; 126(1-2):113-20. PubMed ID: 21958516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glass micromodel study of bacterial dispersion in spatially periodic porous networks.
    Lanning LM; Ford RM
    Biotechnol Bioeng; 2002 Jun; 78(5):556-66. PubMed ID: 12115125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of bacteria in porous media and its enhancement by surfactants for bioaugmentation: A review.
    Zhong H; Liu G; Jiang Y; Yang J; Liu Y; Yang X; Liu Z; Zeng G
    Biotechnol Adv; 2017 Jul; 35(4):490-504. PubMed ID: 28343873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DLVO, hydrophobic, capillary and hydrodynamic forces acting on bacteria at solid-air-water interfaces: Their relative impact on bacteria deposition mechanisms in unsaturated porous media.
    Bai H; Cochet N; Pauss A; Lamy E
    Colloids Surf B Biointerfaces; 2017 Feb; 150():41-49. PubMed ID: 27870993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial interactions and transport in unsaturated porous media.
    Chen G
    Colloids Surf B Biointerfaces; 2008 Dec; 67(2):265-71. PubMed ID: 18930382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling Escherichia coli and Rhodococcus erythropolis transport through wettable and water repellent porous media.
    Sepehrnia N; Bachmann J; Hajabbasi MA; Afyuni M; Horn MA
    Colloids Surf B Biointerfaces; 2018 Dec; 172():280-287. PubMed ID: 30173095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trait-specific dispersal of bacteria in heterogeneous porous environments: from pore to porous medium scale.
    Scheidweiler D; Miele F; Peter H; Battin TJ; de Anna P
    J R Soc Interface; 2020 Mar; 17(164):20200046. PubMed ID: 32208823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial scattering in microfluidic crystal flows reveals giant active Taylor-Aris dispersion.
    Dehkharghani A; Waisbord N; Dunkel J; Guasto JS
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11119-11124. PubMed ID: 31097583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of extracellular polymeric substances on Pseudomonas aeruginosa transport and deposition profiles in porous media.
    Liu Y; Yang CH; Li J
    Environ Sci Technol; 2007 Jan; 41(1):198-205. PubMed ID: 17265948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacteria cell properties and grain size impact on bacteria transport and deposition in porous media.
    Bai H; Cochet N; Pauss A; Lamy E
    Colloids Surf B Biointerfaces; 2016 Mar; 139():148-55. PubMed ID: 26705829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.