These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19544896)

  • 1. Role of sulfur during acetate oxidation in biological anodes.
    Dutta PK; Keller J; Yuan Z; Rozendal RA; Rabaey K
    Environ Sci Technol; 2009 May; 43(10):3839-45. PubMed ID: 19544896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfide-driven microbial electrosynthesis.
    Gong Y; Ebrahim A; Feist AM; Embree M; Zhang T; Lovley D; Zengler K
    Environ Sci Technol; 2013 Jan; 47(1):568-73. PubMed ID: 23252645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell.
    Sun M; Mu ZX; Chen YP; Sheng GP; Liu XW; Chen YZ; Zhao Y; Wang HL; Yu HQ; Wei L; Ma F
    Environ Sci Technol; 2009 May; 43(9):3372-7. PubMed ID: 19534160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The anodic potential shaped a cryptic sulfur cycling with forming thiosulfate in a microbial fuel cell treating hydraulic fracturing flowback water.
    Zhang X; Zhang D; Huang Y; Wu S; Lu P
    Water Res; 2020 Oct; 185():116270. PubMed ID: 32784035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electricity generation from tetrathionate in microbial fuel cells by acidophiles.
    Sulonen ML; Kokko ME; Lakaniemi AM; Puhakka JA
    J Hazard Mater; 2015 Mar; 284():182-9. PubMed ID: 25463232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical sulfide removal from synthetic and real domestic wastewater at high current densities.
    Pikaar I; Rozendal RA; Yuan Z; Keller J; Rabaey K
    Water Res; 2011 Mar; 45(6):2281-9. PubMed ID: 21300393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sampling natural biofilms: a new route to build efficient microbial anodes.
    Erable B; Roncato MA; Achouak W; Bergel A
    Environ Sci Technol; 2009 May; 43(9):3194-9. PubMed ID: 19534134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous electrochemical removal of aqueous sulfide.
    Dutta PK; Rabaey K; Yuan Z; Keller J
    Water Res; 2008 Dec; 42(20):4965-75. PubMed ID: 18954888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of elemental sulfur with a novel integrated bioelectrochemical system with an electrochemical cell.
    Blázquez E; Gabriel D; Baeza JA; Guisasola A; Freguia S; Ledezma P
    Sci Total Environ; 2019 Aug; 677():175-183. PubMed ID: 31055098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper removal and elemental sulfur recovery from fracturing flowback water in a microbial fuel cell with an extra electrochemical anode.
    Wu S; Zhang X; Lu P; Zhang D
    Chemosphere; 2022 Sep; 303(Pt 2):135128. PubMed ID: 35636600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial communities involved in electricity generation from sulfide oxidation in a microbial fuel cell.
    Sun M; Tong ZH; Sheng GP; Chen YZ; Zhang F; Mu ZX; Wang HL; Zeng RJ; Liu XW; Yu HQ; Wei L; Ma F
    Biosens Bioelectron; 2010 Oct; 26(2):470-6. PubMed ID: 20692154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfate and organic carbon removal by microbial fuel cell with sulfate-reducing bacteria and sulfide-oxidising bacteria anodic biofilm.
    Lee DJ; Liu X; Weng HL
    Bioresour Technol; 2014 Mar; 156():14-9. PubMed ID: 24480414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of anode potential on bioelectrochemical and electrochemical tetrathionate degradation.
    Sulonen MLK; Lakaniemi AM; Kokko ME; Puhakka JA
    Bioresour Technol; 2017 Feb; 226():173-180. PubMed ID: 27997871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of high-strength sulfate wastewater using an autotrophic biocathode in view of elemental sulfur recovery.
    Blázquez E; Gabriel D; Baeza JA; Guisasola A
    Water Res; 2016 Nov; 105():395-405. PubMed ID: 27662048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfur oxidation to sulfate coupled with electron transfer to electrodes by Desulfuromonas strain TZ1.
    Zhang T; Bain TS; Barlett MA; Dar SA; Snoeyenbos-West OL; Nevin KP; Lovley DR
    Microbiology (Reading); 2014 Jan; 160(Pt 1):123-129. PubMed ID: 24169815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotic and abiotic characterization of bioanodes formed on oxidized carbon electrodes as a basis to predict their performance.
    Cercado B; Cházaro-Ruiz LF; Ruiz V; López-Prieto Ide J; Buitrón G; Razo-Flores E
    Biosens Bioelectron; 2013 Dec; 50():373-81. PubMed ID: 23891866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the chemical oxidation demand to sulfide ratio on sulfide oxidation in microbial fuel cells treating sulfide-rich wastewater.
    Zhang L; Mao Y; Ma J; Li D; Shi H; Liu Y; Cai L
    Environ Technol; 2013; 34(1-4):269-74. PubMed ID: 23530340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anode materials for sulfide oxidation in alkaline wastewater: An activity and stability performance comparison.
    Ntagia E; Fiset E; da Silva Lima L; Pikaar I; Zhang X; Jeremiasse AW; Prévoteau A; Rabaey K
    Water Res; 2019 Feb; 149():111-119. PubMed ID: 30423502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling dark metabolism to electricity generation using photosynthetic cocultures.
    Badalamenti JP; Torres CI; Krajmalnik-Brown R
    Biotechnol Bioeng; 2014 Feb; 111(2):223-31. PubMed ID: 23893620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process.
    Sun M; Song W; Zhai LF; Cui YZ
    J Hazard Mater; 2013 Dec; 263 Pt 2():643-9. PubMed ID: 24220197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.