These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

590 related articles for article (PubMed ID: 19544953)

  • 1. Comparison of expert and nonexpert swimmers' opinions about the value, potency, and activity of four standard swimming strokes and underwater undulatory swimming.
    Collard L; Oboeuf A
    Percept Mot Skills; 2009 Apr; 108(2):491-8. PubMed ID: 19544953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of limbs' actions to the four competitive swimming strokes: a nonlinear approach.
    Bartolomeu RF; Costa MJ; Barbosa TM
    J Sports Sci; 2018 Aug; 36(16):1836-1845. PubMed ID: 29318954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arm-leg coordination in recreational and competitive breaststroke swimmers.
    Leblanc H; Seifert L; Chollet D
    J Sci Med Sport; 2009 May; 12(3):352-6. PubMed ID: 18358780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of swim speed on leg-to-arm coordination in unilateral arm amputee front crawl swimmers.
    Osborough C; Daly D; Payton C
    J Sports Sci; 2015; 33(14):1523-31. PubMed ID: 25562689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the energy expenditure in competitive swimming strokes.
    Barbosa TM; Fernandes R; Keskinen KL; Colaço P; Cardoso C; Silva J; Vilas-Boas JP
    Int J Sports Med; 2006 Nov; 27(11):894-9. PubMed ID: 16612740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter-limb coordination and energy cost in swimming.
    Seifert L; Komar J; Crettenand F; Dadashi F; Aminian K; Millet GP
    J Sci Med Sport; 2014 Jul; 17(4):439-44. PubMed ID: 23932428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pitching effects of buoyancy during four competitive swimming strokes.
    Cohen RC; Cleary PW; Harrison SM; Mason BR; Pease DL
    J Appl Biomech; 2014 Oct; 30(5):609-18. PubMed ID: 24979812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the starting and turning performances on the subsequent swimming parameters of elite swimmers.
    Veiga S; Roig A
    Sports Biomech; 2017 Mar; 16(1):34-44. PubMed ID: 27241626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intra-cyclic distance per stroke phase, velocity fluctuations and acceleration time ratio of a breaststroker's hip: a comparison between elite and nonelite swimmers at different race paces.
    Leblanc H; Seifert L; Tourny-Chollet C; Chollet D
    Int J Sports Med; 2007 Feb; 28(2):140-7. PubMed ID: 16835822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pacing in World-Class Age Group Swimmers in 100 and 200 m Freestyle, Backstroke, Breaststroke, and Butterfly.
    Moser C; Sousa CV; Olher RR; Nikolaidis PT; Knechtle B
    Int J Environ Res Public Health; 2020 May; 17(11):. PubMed ID: 32486151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of advanced and intermediate 200-m backstroke swimmers' dominant and non-dominant shoulder entry angles across various swimming speeds.
    Andrews C; Bakewell J; Scurr JC
    J Sports Sci; 2011 Apr; 29(7):743-8. PubMed ID: 21416447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the effects of training on underwater undulatory swimming performance and kinematics.
    Ruiz-Navarro JJ; Cano-Adamuz M; Andersen JT; Cuenca-Fernández F; López-Contreras G; Vanrenterghem J; Arellano R
    Sports Biomech; 2024 Jun; 23(6):772-787. PubMed ID: 33663350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longitudinal development of physical and performance parameters during biological maturation of young male swimmers.
    Lätt E; Jürimäe J; Haljaste K; Cicchella A; Purge P; Jürimäe T
    Percept Mot Skills; 2009 Feb; 108(1):297-307. PubMed ID: 19425470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do expert swimmers have expert technique? Comment on "Arm coordination and performance level in the 400-m front crawl" by Schnitzler, Seifert, and Chollet (2011).
    Havriluk R
    Res Q Exerc Sport; 2012 Jun; 83(2):359-62. PubMed ID: 22808723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolated core training improves sprint performance in national-level junior swimmers.
    Weston M; Hibbs AE; Thompson KG; Spears IR
    Int J Sports Physiol Perform; 2015 Mar; 10(2):204-10. PubMed ID: 25025936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Body movement distribution with respect to swimmer's glide position in human underwater undulatory swimming.
    Hochstein S; Blickhan R
    Hum Mov Sci; 2014 Dec; 38():305-18. PubMed ID: 25457427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of aerobic training on inter-arm coordination in highly trained swimmers.
    Schnitzler C; Seifert L; Chollet D; Toussaint H
    Hum Mov Sci; 2014 Feb; 33():43-53. PubMed ID: 24576707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in spatial-temporal parameters and arm-leg coordination in butterfly stroke as a function of race pace, skill and gender.
    Seifert L; Boulesteix L; Chollet D; Vilas-Boas JP
    Hum Mov Sci; 2008 Feb; 27(1):96-111. PubMed ID: 17935810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships of stroke rate, distance per stroke, and velocity in competitive swimming.
    Craig AB; Pendergast DR
    Med Sci Sports; 1979; 11(3):278-83. PubMed ID: 522640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in Race Characteristics between World-Class Individual-Medley and Stroke-Specialist Swimmers.
    Gonjo T; Polach M; Olstad BH; Romann M; Born DP
    Int J Environ Res Public Health; 2022 Oct; 19(20):. PubMed ID: 36294159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.