These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 19545019)

  • 61. Different partition of polycyclic aromatic hydrocarbon on environmental particulates in freshwater: Microplastics in comparison to natural sediment.
    Wang W; Wang J
    Ecotoxicol Environ Saf; 2018 Jan; 147():648-655. PubMed ID: 28934708
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Biodegradation of phenanthrene in bioaugmented microcosm by consortium ASP developed from coastal sediment of Alang-Sosiya ship breaking yard.
    Patel V; Patel J; Madamwar D
    Mar Pollut Bull; 2013 Sep; 74(1):199-207. PubMed ID: 23906474
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Effect of nonionic surfactant Tween80 and DOM on the behaviors of desorption of phenanthrene and pyrene in soil-water systems].
    Wang GM; Sun C; Xie XQ
    Huan Jing Ke Xue; 2007 Apr; 28(4):832-7. PubMed ID: 17639946
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Characterization of polycyclic aromatic hydrocarbon bioavailability in estuarine sediments using thin-film extraction.
    Golding CJ; Gobas FA; Birch GE
    Environ Toxicol Chem; 2007 May; 26(5):829-36. PubMed ID: 17521126
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effect of organic fractions on sorption properties of organic pollutants in sediments.
    Chen HL; Zhou JM; Chen YX; Xu YT
    J Environ Sci (China); 2005; 17(2):200-4. PubMed ID: 16295888
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Enhanced microbial degradation of humin-bound phenanthrene in a two-liquid-phase system.
    Zhang Y; Wang F; Wang C; Hong Q; Kengara FO; Wang T; Song Y; Jiang X
    J Hazard Mater; 2011 Feb; 186(2-3):1830-6. PubMed ID: 21232850
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The sorption of organic contaminants on biochars derived from sediments with high organic carbon content.
    Wu M; Pan B; Zhang D; Xiao D; Li H; Wang C; Ning P
    Chemosphere; 2013 Jan; 90(2):782-8. PubMed ID: 23089389
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Distribution characteristics of phenanthrene in the water, suspended particles and sediments from Yangtze River under hydrodynamic conditions.
    Wang L; Shen Z; Wang H; Niu J; Lian G; Yang Z
    J Hazard Mater; 2009 Jun; 165(1-3):441-6. PubMed ID: 19022579
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Sorption of Phenanthrene to Soybean and Wheat Roots and the Bioavailability of Sorbed Phenanthrene].
    Wang HJ; Li QQ; Shen Y; Gu RC; Sheng Y; Zhan XH
    Huan Jing Ke Xue; 2017 Jun; 38(6):2561-2567. PubMed ID: 29965378
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Bioavailability of adsorbed phenanthrene by black carbon and multi-walled carbon nanotubes to Agrobacterium.
    Xia X; Li Y; Zhou Z; Feng C
    Chemosphere; 2010 Mar; 78(11):1329-36. PubMed ID: 20116085
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cadmium mobility in sediments and soils from a coal mining area on Tibagi River watershed: environmental risk assessment.
    Galunin E; Ferreti J; Zapelini I; Vieira I; Ricardo Teixeira Tarley C; Abrão T; Santos MJ
    J Hazard Mater; 2014 Jan; 265():280-7. PubMed ID: 24326121
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Sorption of ionic surfactants to estuarine sediment and their influence on the sequestration of phenanthrene.
    Jones-Hughes T; Turner A
    Environ Sci Technol; 2005 Mar; 39(6):1688-97. PubMed ID: 15819226
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Sorption of phenanthrene and benzene on differently structural kerogen: important role of micropore-filling.
    Zhang Y; Ma X; Ran Y
    Environ Pollut; 2014 Feb; 185():213-8. PubMed ID: 24286696
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Thermodynamics of phenanthrene partition into solid organic matter from water.
    Chen BL; Zhu LZ; Tao S
    J Environ Sci (China); 2005; 17(2):185-9. PubMed ID: 16295885
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Competitive sorption between 17alpha-ethinyl estradiol and naphthalene/phenanthrene by sediments.
    Yu Z; Huang W
    Environ Sci Technol; 2005 Jul; 39(13):4878-85. PubMed ID: 16053087
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Competition between phenanthrene, chrysene, and 2,5-dichlorobiphenyl for high-energy adsorption sites in a sediment.
    Morelis S; van den Heuvel H; van Noort PC
    Chemosphere; 2007 Aug; 68(11):2028-32. PubMed ID: 17400280
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Enhanced desorption and biodegradation of phenanthrene in soil-water systems with the presence of anionic-nonionic mixed surfactants.
    Yu H; Zhu L; Zhou W
    J Hazard Mater; 2007 Apr; 142(1-2):354-61. PubMed ID: 16987596
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Model-aided characterization of Tenax-TA for aromatic compound uptake from water.
    Zhao D; Pignatello JJ
    Environ Toxicol Chem; 2004 Jul; 23(7):1592-9. PubMed ID: 15230310
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Sorption of heavy oil onto Jiaozhou Bay sediment.
    Cao X; Yang G; Wei S; Han H
    Mar Pollut Bull; 2011 Apr; 62(4):741-6. PubMed ID: 21310436
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Factors influencing adsorption and desorption of trimethoprim on marine sediments: mechanisms and kinetics.
    Li J; Zhang H
    Environ Sci Pollut Res Int; 2017 Sep; 24(27):21929-21937. PubMed ID: 28780692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.