These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 19545160)

  • 41. Tuning the 3D plasmon field of nanohole arrays.
    Couture M; Liang Y; Poirier Richard HP; Faid R; Peng W; Masson JF
    Nanoscale; 2013 Dec; 5(24):12399-408. PubMed ID: 24162773
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Plasmon-based nanolenses assembled on a well-defined DNA template.
    Bidault S; Abajo FJ; Polman A
    J Am Chem Soc; 2008 Mar; 130(9):2750-1. PubMed ID: 18266376
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optical detection of phenolic compounds based on the surface plasmon resonance band of Au nanoparticles.
    Nezhad MR; Alimohammadi M; Tashkhourian J; Razavian SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):199-203. PubMed ID: 18222104
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Past, present, and future of gold nanoparticles.
    Jennings T; Strouse G
    Adv Exp Med Biol; 2007; 620():34-47. PubMed ID: 18217333
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gold nanoparticles on polarizable surfaces as Raman scattering antennas.
    Chen SY; Mock JJ; Hill RT; Chilkoti A; Smith DR; Lazarides AA
    ACS Nano; 2010 Nov; 4(11):6535-46. PubMed ID: 21038892
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Plasmon-polariton nano-strip resonators: from visible to infra-red.
    Della Valle G; Sondergaard T; Bozhevolnyi SI
    Opt Express; 2008 May; 16(10):6867-76. PubMed ID: 18545389
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Localized surface plasmon coupled fluorescence fiber-optic biosensor with gold nanoparticles.
    Hsieh BY; Chang YF; Ng MY; Liu WC; Lin CH; Wu HT; Chou C
    Anal Chem; 2007 May; 79(9):3487-93. PubMed ID: 17378542
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars.
    Zhang Q; Large N; Wang H
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17255-67. PubMed ID: 25222940
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Surface plasmon resonance and field enhancement in #-shaped gold wires metamaterial.
    Hu WQ; Liang EJ; Ding P; Cai GW; Xue QZ
    Opt Express; 2009 Nov; 17(24):21843-9. PubMed ID: 19997429
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size.
    Nath N; Chilkoti A
    Anal Chem; 2004 Sep; 76(18):5370-8. PubMed ID: 15362894
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Use of a near-field optical probe to locally launch surface plasmon polaritons on plasmonic waveguides: a study by the finite difference time domain method.
    Hwang BS; Kwon MH; Kim J
    Microsc Res Tech; 2004 Aug; 64(5-6):453-8. PubMed ID: 15549697
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of higher order long-propagation-length surface plasmon polariton modes in chemically prepared gold nanowires.
    Paul A; Solis D; Bao K; Chang WS; Nauert S; Vidgerman L; Zubarev ER; Nordlander P; Link S
    ACS Nano; 2012 Sep; 6(9):8105-13. PubMed ID: 22900780
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis and optical properties of silver nanoparticles and arrays.
    Evanoff DD; Chumanov G
    Chemphyschem; 2005 Jul; 6(7):1221-31. PubMed ID: 15942971
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance.
    Li X; Tamada K; Baba A; Knoll W; Hara M
    J Phys Chem B; 2006 Aug; 110(32):15755-62. PubMed ID: 16898722
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Acousto-plasmonic and surface-enhanced Raman scattering properties of coupled gold nanospheres/nanodisk trimers.
    Tripathy S; Marty R; Lin VK; Teo SL; Ye E; Arbouet A; Saviot L; Girard C; Han MY; Mlayah A
    Nano Lett; 2011 Feb; 11(2):431-7. PubMed ID: 21214216
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Polarization tunable transmission through plasmonic arrays of elliptical nanopores.
    Lovera P; Jones D; Corbett B; O'Riordan A
    Opt Express; 2012 Nov; 20(23):25325-32. PubMed ID: 23187349
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes.
    Weber D; Albella P; Alonso-González P; Neubrech F; Gui H; Nagao T; Hillenbrand R; Aizpurua J; Pucci A
    Opt Express; 2011 Aug; 19(16):15047-61. PubMed ID: 21934866
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film.
    Poutrina E; Ciracì C; Gauthier DJ; Smith DR
    Opt Express; 2012 May; 20(10):11005-13. PubMed ID: 22565723
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optically tunable surfaces with trapped particles in microcavities.
    Sainidou R; García de Abajo FJ
    Phys Rev Lett; 2008 Sep; 101(13):136802. PubMed ID: 18851478
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optical switching of coupled plasmons of Ag-nanoparticles by photoisomerisation of an azobenzene ligand.
    Ahonen P; Schiffrin DJ; Paprotny J; Kontturi K
    Phys Chem Chem Phys; 2007 Feb; 9(5):651-8. PubMed ID: 17242747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.