These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 19545196)

  • 21. Mechanisms of non-genotoxic carcinogens and importance of a weight of evidence approach.
    Hernández LG; van Steeg H; Luijten M; van Benthem J
    Mutat Res; 2009; 682(2-3):94-109. PubMed ID: 19631282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cancer dose--response assessment for acrylonitrile based upon rodent brain tumor incidence: use of epidemiologic, mechanistic, and pharmacokinetic support for nonlinearity.
    Kirman CR; Gargas ML; Marsh GM; Strother DE; Klaunig JE; Collins JJ; Deskin R
    Regul Toxicol Pharmacol; 2005 Oct; 43(1):85-103. PubMed ID: 16099568
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mode-of-action framework for evaluating the relevance of rodent forestomach tumors in cancer risk assessment.
    Proctor DM; Gatto NM; Hong SJ; Allamneni KP
    Toxicol Sci; 2007 Aug; 98(2):313-26. PubMed ID: 17426108
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Quantitative methods of cancer risk assessment in exposure to chemicals].
    Szymczak W
    Med Pr; 2009; 60(3):215-21. PubMed ID: 19746890
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Risk assessment of dietary exposures to compounds that are genotoxic and carcinogenic--an overview.
    Dybing E; O'Brien J; Renwick AG; Sanner T
    Toxicol Lett; 2008 Aug; 180(2):110-7. PubMed ID: 18584977
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens I. Sensitivity, specificity and relative predictivity.
    Kirkland D; Aardema M; Henderson L; Müller L
    Mutat Res; 2005 Jul; 584(1-2):1-256. PubMed ID: 15979392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens II. Further analysis of mammalian cell results, relative predictivity and tumour profiles.
    Kirkland D; Aardema M; Müller L; Makoto H
    Mutat Res; 2006 Sep; 608(1):29-42. PubMed ID: 16769241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chloroform mode of action: implications for cancer risk assessment.
    Golden RJ; Holm SE; Robinson DE; Julkunen PH; Reese EA
    Regul Toxicol Pharmacol; 1997 Oct; 26(2):142-55. PubMed ID: 9356278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Epidemiological and experimental applications to occupational cancer prevention.
    Vainio H; Hemminki K
    J UOEH; 1989 Mar; 11 Suppl():323-45. PubMed ID: 2664947
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Environmental and chemical carcinogenesis.
    Wogan GN; Hecht SS; Felton JS; Conney AH; Loeb LA
    Semin Cancer Biol; 2004 Dec; 14(6):473-86. PubMed ID: 15489140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonlinearity and thresholds in dose-response relationships for carcinogenicity due to sampling variation, logarithmic dose scaling, or small differences in individual susceptibility.
    Lutz WK; Gaylor DW; Conolly RB; Lutz RW
    Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):565-9. PubMed ID: 15982698
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Health related guide values for drinking-water since 1993 as guidance to assess presence of new analytes in drinking-water.
    Dieter HH
    Int J Hyg Environ Health; 2014 Mar; 217(2-3):117-32. PubMed ID: 23820379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Addressing nonlinearity in the exposure-response relationship for a genotoxic carcinogen: cancer potency estimates for ethylene oxide.
    Kirman CR; Sweeney LM; Teta MJ; Sielken RL; Valdez-Flores C; Albertini RJ; Gargas ML
    Risk Anal; 2004 Oct; 24(5):1165-83. PubMed ID: 15563286
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Principles of risk assessment for determining the safety of chemicals: recent assessment of residual solvents in drugs and di(2-ethylhexyl) phthalate.
    Hasegawa R; Koizumi M; Hirose A
    Congenit Anom (Kyoto); 2004 Jun; 44(2):51-9. PubMed ID: 15198717
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reducing uncertainty in risk assessment by using specific knowledge to replace default options.
    McClellan RO
    Drug Metab Rev; 1996; 28(1-2):149-79. PubMed ID: 8744594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards a harmonized approach for risk assessment of genotoxic carcinogens in the European Union.
    Crebelli R
    Ann Ist Super Sanita; 2006; 42(2):127-31. PubMed ID: 17033132
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Creating context for the use of DNA adduct data in cancer risk assessment: I. Data organization.
    Jarabek AM; Pottenger LH; Andrews LS; Casciano D; Embry MR; Kim JH; Preston RJ; Reddy MV; Schoeny R; Shuker D; Skare J; Swenberg J; Williams GM; Zeiger E
    Crit Rev Toxicol; 2009; 39(8):659-78. PubMed ID: 19743944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The road to linearity: why linearity at low doses became the basis for carcinogen risk assessment.
    Calabrese EJ
    Arch Toxicol; 2009 Mar; 83(3):203-25. PubMed ID: 19247635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carcinogenic risks of dioxin: mechanistic considerations.
    Schwarz M; Appel KE
    Regul Toxicol Pharmacol; 2005 Oct; 43(1):19-34. PubMed ID: 16054739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.