These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 19545407)

  • 1. Elongation factor eEF1B modulates functions of the release factors eRF1 and eRF3 and the efficiency of translation termination in yeast.
    Valouev IA; Fominov GV; Sokolova EE; Smirnov VN; Ter-Avanesyan MD
    BMC Mol Biol; 2009 Jun; 10():60. PubMed ID: 19545407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-terminal region of Saccharomyces cerevisiae eRF3 is essential for the functioning of the eRF1/eRF3 complex beyond translation termination.
    Urakov VN; Valouev IA; Kochneva-Pervukhova NV; Packeiser AN; Vishnevsky AY; Glebov OO; Smirnov VN; Ter-Avanesyan MD
    BMC Mol Biol; 2006 Oct; 7():34. PubMed ID: 17034622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GTP hydrolysis by eRF3 facilitates stop codon decoding during eukaryotic translation termination.
    Salas-Marco J; Bedwell DM
    Mol Cell Biol; 2004 Sep; 24(17):7769-78. PubMed ID: 15314182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3.
    Zhouravleva G; Frolova L; Le Goff X; Le Guellec R; Inge-Vechtomov S; Kisselev L; Philippe M
    EMBO J; 1995 Aug; 14(16):4065-72. PubMed ID: 7664746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribosome-bound Pub1 modulates stop codon decoding during translation termination in yeast.
    Urakov VN; Mitkevich OV; Safenkova IV; Ter-Avanesyan MD
    FEBS J; 2017 Jun; 284(12):1914-1930. PubMed ID: 28467675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast polypeptide chain release factors eRF1 and eRF3 are involved in cytoskeleton organization and cell cycle regulation.
    Valouev IA; Kushnirov VV; Ter-Avanesyan MD
    Cell Motil Cytoskeleton; 2002 Jul; 52(3):161-73. PubMed ID: 12112144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The stretch of C-terminal acidic amino acids of translational release factor eRF1 is a primary binding site for eRF3 of fission yeast.
    Ito K; Ebihara K; Nakamura Y
    RNA; 1998 Aug; 4(8):958-72. PubMed ID: 9701287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Termination of translation in eukaryotes is mediated by the quaternary eRF1*eRF3*GTP*Mg2+ complex. The biological roles of eRF3 and prokaryotic RF3 are profoundly distinct.
    Mitkevich VA; Kononenko AV; Petrushanko IY; Yanvarev DV; Makarov AA; Kisselev LL
    Nucleic Acids Res; 2006; 34(14):3947-54. PubMed ID: 16914449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Class-1 release factor eRF1 promotes GTP binding by class-2 release factor eRF3.
    Hauryliuk V; Zavialov A; Kisselev L; Ehrenberg M
    Biochimie; 2006 Jul; 88(7):747-57. PubMed ID: 16797113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eukaryotic polypeptide chain release factor eRF3 is an eRF1- and ribosome-dependent guanosine triphosphatase.
    Frolova L; Le Goff X; Zhouravleva G; Davydova E; Philippe M; Kisselev L
    RNA; 1996 Apr; 2(4):334-41. PubMed ID: 8634914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translation termination depends on the sequential ribosomal entry of eRF1 and eRF3.
    Beißel C; Neumann B; Uhse S; Hampe I; Karki P; Krebber H
    Nucleic Acids Res; 2019 May; 47(9):4798-4813. PubMed ID: 30873535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Increased tRNA concentration in yeast containing mutant termination translation factors eRF1 and eRF3].
    Zhuravleva GA; Moskalenko SE; Shabel'skaia SV; Philippe M; Inge-Vechtomov SG
    Mol Biol (Mosk); 2006; 40(4):724-30. PubMed ID: 16913231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GTP-dependent structural rearrangement of the eRF1:eRF3 complex and eRF3 sequence motifs essential for PABP binding.
    Kononenko AV; Mitkevich VA; Atkinson GC; Tenson T; Dubovaya VI; Frolova LY; Makarov AA; Hauryliuk V
    Nucleic Acids Res; 2010 Jan; 38(2):548-58. PubMed ID: 19906736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C-terminal interaction of translational release factors eRF1 and eRF3 of fission yeast: G-domain uncoupled binding and the role of conserved amino acids.
    Ebihara K; Nakamura Y
    RNA; 1999 Jun; 5(6):739-50. PubMed ID: 10376874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene Amplification as a Mechanism of Yeast Adaptation to Nonsense Mutations in Release Factor Genes.
    Maksiutenko EM; Barbitoff YA; Matveenko AG; Moskalenko SE; Zhouravleva GA
    Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutation at tyrosine in AMLRY (GILRY like) motif of yeast eRF1 on nonsense codons suppression and binding affinity to eRF3.
    Akhmaloka ; Susilowati PE; Subandi ; Madayanti F
    Int J Biol Sci; 2008 Apr; 4(2):87-95. PubMed ID: 18463713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translation termination: new factors and insights.
    Baierlein C; Krebber H
    RNA Biol; 2010; 7(5):548-50. PubMed ID: 21081843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depletion in the levels of the release factor eRF1 causes a reduction in the efficiency of translation termination in yeast.
    Stansfield I; Eurwilaichitr L; Akhmaloka ; Tuite MF
    Mol Microbiol; 1996 Jun; 20(6):1135-43. PubMed ID: 8809766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Suppression of nonsense and frameshift mutations obtained by different methods for inactivating the translation termination factor eRF3 in yeast Saccharomyces cerevisiae].
    Zadorskiĭ SP; Borkhsenius AS; Sopova IuV; Startsev VA; Inge-Vechtomov SG
    Genetika; 2003 Apr; 39(4):489-94. PubMed ID: 12760248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eukaryotic release factor 3 is required for multiple turnovers of peptide release catalysis by eukaryotic release factor 1.
    Eyler DE; Wehner KA; Green R
    J Biol Chem; 2013 Oct; 288(41):29530-8. PubMed ID: 23963452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.