These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1954568)

  • 21. Factors influencing hydrogen ion concentration in muscle after intense exercise.
    Kowalchuk JM; Heigenhauser GJ; Lindinger MI; Sutton JR; Jones NL
    J Appl Physiol (1985); 1988 Nov; 65(5):2080-9. PubMed ID: 3145275
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acid-base regulation and blood gas transport following exhaustive exercise in an agnathan, the sea lamprey Petromyzon marinus.
    Tufts BL
    J Exp Biol; 1991 Sep; 159():371-85. PubMed ID: 1940770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acid-base regulation during exercise and recovery in humans.
    Stringer W; Casaburi R; Wasserman K
    J Appl Physiol (1985); 1992 Mar; 72(3):954-61. PubMed ID: 1568991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exercise acidosis as cause of electrolyte changes in femoral venous blood of trained and untrained man.
    Tibes U; Hemmer B; Schweigart U; Böning D; Fotescu D
    Pflugers Arch; 1974 Jan; 347(2):145-58. PubMed ID: 4856537
    [No Abstract]   [Full Text] [Related]  

  • 25. Causes of differences in exercise-induced changes of base excess and blood lactate.
    Böning D; Klarholz C; Himmelsbach B; Hütler M; Maassen N
    Eur J Appl Physiol; 2007 Jan; 99(2):163-71. PubMed ID: 17115177
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Red cell hemoglobin, hydrogen ion and electrolyte concentrations during exercise in trained and untrained subjects.
    Böning D; Tibes U; Schweigart U
    Eur J Appl Physiol Occup Physiol; 1976 Sep; 35(4):243-9. PubMed ID: 10157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Influence of the duration of hypercapnia on plasma and erythrocyte electrolytes in rats].
    Reichart E; Puchelle E
    C R Seances Soc Biol Fil; 1971; 165(6):1416-9. PubMed ID: 4262055
    [No Abstract]   [Full Text] [Related]  

  • 28. Lactate and potassium fluxes from human skeletal muscle during and after intense, dynamic, knee extensor exercise.
    Juel C; Bangsbo J; Graham T; Saltin B
    Acta Physiol Scand; 1990 Oct; 140(2):147-59. PubMed ID: 2125176
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of exercise intensity on potassium balance in muscle and blood of man.
    Vøllestad NK; Hallén J; Sejersted OM
    J Physiol; 1994 Mar; 475(2):359-68. PubMed ID: 8021842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lactate and H+ uptake in inactive muscles during intense exercise in man.
    Bangsbo J; Aagaard T; Olsen M; Kiens B; Turcotte LP; Richter EA
    J Physiol; 1995 Oct; 488 ( Pt 1)(Pt 1):219-29. PubMed ID: 8568658
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exercise-induced stimulation of K(+) transport in human erythrocytes.
    Lindinger MI; Horn PL; Grudzien SP
    J Appl Physiol (1985); 1999 Dec; 87(6):2157-67. PubMed ID: 10601163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effect of tobacco smoking on plasma sodium, potassium and chloride concentrations and some parameters of acid-base equilibrium during physical exertion and in the course of restitution].
    Markiewicz K; Chmura J; Cholewa M
    Med Pr; 1977; 28(6):473-80. PubMed ID: 609324
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Roles of CO2, O2, and acid in arteriovenous [H+] difference during muscle contractions.
    Stainsby WN; Eitzman PD
    J Appl Physiol (1985); 1988 Oct; 65(4):1803-10. PubMed ID: 2846498
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic acidosis and changes in water and electrolyte balance after maximal exercise.
    Sejersted OM; Medbø JI; Hermansen L
    Ciba Found Symp; 1982; 87():153-67. PubMed ID: 6804191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of skeletal muscle in plasma ion and acid-base regulation after NaHCO3 and KHCO3 loading in humans.
    Lindinger MI; Franklin TW; Lands LC; Pedersen PK; Welsh DG; Heigenhauser GJ
    Am J Physiol; 1999 Jan; 276(1):R32-43. PubMed ID: 9887175
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Blood biochemical status of miniature swine during submaximal and exhaustive exercise.
    Wilkerson JE; Sanders TM; Bloor CM
    Med Sci Sports Exerc; 1986 Apr; 18(2):180-5. PubMed ID: 3517548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic changes in newborn infants following surgical operations. II. Acid-base status of whole blood and erythrocytes, blood lactate and electrolytes.
    Pintér A
    Acta Paediatr Acad Sci Hung; 1975; 16(2):181-8. PubMed ID: 1229834
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation into intraerythrocytic and extraerythrocytic acid-base and electrolyte changes after long-term ammonium chloride administration in dogs.
    Schober KE
    Am J Vet Res; 1996 May; 57(5):743-9. PubMed ID: 8723893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in plasma and erythrocyte K+ during hypercapnia and different grades of exercise in trout.
    Nielsen OB; Lykkeboe G
    J Appl Physiol (1985); 1992 Apr; 72(4):1285-90. PubMed ID: 1592716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissociation between lactate and proton exchange in muscle during intense exercise in man.
    Bangsbo J; Juel C; Hellsten Y; Saltin B
    J Physiol; 1997 Oct; 504 ( Pt 2)(Pt 2):489-99. PubMed ID: 9365920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.