These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 1954581)

  • 1. Ecologically significant effects of Pseudomonas putida PPO301(pRO103), genetically engineered to degrade 2,4-dichlorophenoxyacetate, on microbial populations and processes in soil.
    Doyle JD; Short KA; Stotzky G; King RJ; Seidler RJ; Olsen RH
    Can J Microbiol; 1991 Sep; 37(9):682-91. PubMed ID: 1954581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of 2,4-dichlorophenol, a metabolite of a genetically engineered bacterium, and 2,4-dichlorophenoxyacetate on some microorganism-mediated ecological processes in soil.
    Short KA; Doyle JD; King RJ; Seidler RJ; Stotzky G; Olsen RH
    Appl Environ Microbiol; 1991 Feb; 57(2):412-8. PubMed ID: 16348408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of phenoxyacetic acid in soil by Pseudomonas putida PP0301(pR0103), a constitutive degrader of 2,4-dichlorophenoxyacetate.
    Short KA; King RJ; Seidler RJ; Olsen RH
    Mol Ecol; 1992 Aug; 1(2):89-94. PubMed ID: 1344988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assay for detection and enumeration of genetically engineered microorganisms which is based on the activity of a deregulated 2,4-dichlorophenoxyacetate monooxygenase.
    King RJ; Short KA; Seidler RJ
    Appl Environ Microbiol; 1991 Jun; 57(6):1790-2. PubMed ID: 1872608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat.
    Glandorf DC; Verheggen P; Jansen T; Jorritsma JW; Smit E; Leeflang P; Wernars K; Thomashow LS; Laureijs E; Thomas-Oates JE; Bakker PA; van Loon LC
    Appl Environ Microbiol; 2001 Aug; 67(8):3371-8. PubMed ID: 11472906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survival and impact of genetically engineered Pseudomonas putida harboring mercury resistance gene in soil microcosms.
    Iwasaki K; Uchiyama H; Yagi O
    Biosci Biotechnol Biochem; 1994 Jan; 58(1):156-9. PubMed ID: 7764510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of gene bioaugmentation with pJP4-harboring bacteria of 2,4-D-contaminated soil slurry on the indigenous microbial community.
    Inoue D; Yamazaki Y; Tsutsui H; Sei K; Soda S; Fujita M; Ike M
    Biodegradation; 2012 Apr; 23(2):263-76. PubMed ID: 21850504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetically engineered Pseudomonas putida X3 strain and its potential ability to bioremediate soil microcosms contaminated with methyl parathion and cadmium.
    Zhang R; Xu X; Chen W; Huang Q
    Appl Microbiol Biotechnol; 2016 Feb; 100(4):1987-1997. PubMed ID: 26521245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of a lignin peroxidase-expressing recombinant, Streptomyces lividans TK23.1, on biogeochemical cycling and the numbers and activities of microorganisms in soil.
    Crawford DL; Doyle JD; Wang Z; Hendricks CW; Bentjen SA; Bolton H; Fredrickson JK; Bleakley BH
    Appl Environ Microbiol; 1993 Feb; 59(2):508-18. PubMed ID: 8434915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid.
    Germaine KJ; Liu X; Cabellos GG; Hogan JP; Ryan D; Dowling DN
    FEMS Microbiol Ecol; 2006 Aug; 57(2):302-10. PubMed ID: 16867147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of the microscale distribution of a Pseudomonas strain introduced into soil on potential contacts with indigenous bacteria.
    Dechesne A; Pallud C; Bertolla F; Grundmann GL
    Appl Environ Microbiol; 2005 Dec; 71(12):8123-31. PubMed ID: 16332794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of glucose on the amount of bacteria mineralizing 2,4-dichlorophenoxyacetic acid in soil.
    Kunc F; Rybárová J
    Folia Microbiol (Praha); 1983; 28(1):54-6. PubMed ID: 6832659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation.
    Ronchel MC; Ramos JL
    Appl Environ Microbiol; 2001 Jun; 67(6):2649-56. PubMed ID: 11375176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of fungal hyphae on the access of bacteria to phenanthrene in soil.
    Wick LY; Remer R; Würz B; Reichenbach J; Braun S; Schäfer F; Harms H
    Environ Sci Technol; 2007 Jan; 41(2):500-5. PubMed ID: 17310713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dehydrogenase activity and microbial population in a red sandy soil amended and unamended with incubation.
    Viswanath NR; Patil RB; Rangaswami G
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1977; 132(4):335-9. PubMed ID: 20719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An engineered Pseudomonas putida can simultaneously degrade organophosphates, pyrethroids and carbamates.
    Gong T; Xu X; Dang Y; Kong A; Wu Y; Liang P; Wang S; Yu H; Xu P; Yang C
    Sci Total Environ; 2018 Jul; 628-629():1258-1265. PubMed ID: 30045547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time PCR quantification of a green fluorescent protein-labeled, genetically engineered Pseudomonas putida strain during 2-chlorobenzoate degradation in soil.
    Wang G; Gentry TJ; Grass G; Josephson K; Rensing C; Pepper IL
    FEMS Microbiol Lett; 2004 Apr; 233(2):307-14. PubMed ID: 15063501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73.
    Niu GL; Zhang JJ; Zhao S; Liu H; Boon N; Zhou NY
    Environ Pollut; 2009 Mar; 157(3):763-71. PubMed ID: 19108939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survival and impact of genetically engineered Pseudomonas putida harboring mercury resistance gene in aquatic microcosms.
    Iwasaki K; Uchiyama H; Yagi O
    Biosci Biotechnol Biochem; 1993 Aug; 57(8):1264-9. PubMed ID: 7764012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of reverse transcriptase PCR for monitoring expression of the catabolic dmpN gene in a phenol-degrading sequencing batch reactor.
    Selvaratnam S; Schoedel BA; McFarland BL; Kulpa CF
    Appl Environ Microbiol; 1995 Nov; 61(11):3981-5. PubMed ID: 8526513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.