These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 19547004)

  • 1. Fabrication and characterization of microlens arrays using a cantilever-based spotter.
    Bardinal V; Daran E; Leïchlé T; Vergnenègre C; Levallois C; Camps T; Conedera V; Doucet JB; Carcenac F; Ottevaere H; Thienpont H
    Opt Express; 2007 May; 15(11):6900-7. PubMed ID: 19547004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of aspherical SU-8 microlens array utilizing novel stamping process and electro-static pulling method.
    Kuo SM; Lin CH
    Opt Express; 2010 Aug; 18(18):19114-9. PubMed ID: 20940806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two step process for the fabrication of diffraction limited concave microlens arrays.
    Ruffieux P; Scharf T; Philipoussis I; Herzig HP; Voelkel R; Weible KJ
    Opt Express; 2008 Nov; 16(24):19541-9. PubMed ID: 19030040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arrays of microlenses with variable focal lengths fabricated by restructuring polymer surfaces with an ink-jet device.
    Pericet-Camara R; Best A; Nett SK; Gutmann JS; Bonaccurso E
    Opt Express; 2007 Jul; 15(15):9877-82. PubMed ID: 19547338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Step-Height Measurement of Surface Functionalized Micromachined Microcantilever Using Scanning White Light Interferometry.
    Kurhekar AS; Apte PR
    Int J Adv Eng Technol; 2012 Jan; 2(1):241-248. PubMed ID: 24098867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of polymer microlens array with controllable focal length by modifying surface wettability.
    Xu Q; Dai B; Huang Y; Wang H; Yang Z; Wang K; Zhuang S; Zhang D
    Opt Express; 2018 Feb; 26(4):4172-4182. PubMed ID: 29475269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and Characterization of Curved Compound Eyes Based on Multifocal Microlenses.
    Lian G; Liu Y; Tao K; Xing H; Huang R; Chi M; Zhou W; Wu Y
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32947769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid fabrication of thermoplastic polymer refractive microlens array using contactless hot embossing technology.
    Xie D; Chang X; Shu X; Wang Y; Ding H; Liu Y
    Opt Express; 2015 Feb; 23(4):5154-66. PubMed ID: 25836549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct writing of microlenses in polycarbonate with excimer laser ablation.
    Naessens K; Ottevaere H; Baets R; Van Daele P; Thienpont H
    Appl Opt; 2003 Nov; 42(31):6349-59. PubMed ID: 14649278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supercritical Fluid-Driven Polymer Phase Separation for Microlens with Tunable Dimension and Curvature.
    Yang Y; Huang X; Zhang X; Jiang F; Zhang X; Wang Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8849-58. PubMed ID: 26999714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined Twyman-Green and Mach-Zehnder interferometer for microlens testing.
    Reichelt S; Zappe H
    Appl Opt; 2005 Sep; 44(27):5786-92. PubMed ID: 16201443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-Induced Fabrication of Micro-Optics on Bioresorbable Calcium Phosphate Glass for Implantable Devices.
    Meena Narayana Menon D; Pugliese D; Giardino M; Janner D
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffraction-limited blazed reflection diffractive microlenses for oblique incidence fabricated by electron-beam lithography.
    Shiono T; Ogawa H
    Appl Opt; 1991 Sep; 30(25):3643-9. PubMed ID: 20706439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser.
    Yong J; Chen F; Yang Q; Du G; Bian H; Zhang D; Si J; Yun F; Hou X
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9382-5. PubMed ID: 24070159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of microlens properties in the presence of high spherical aberration.
    Testorf M; Sinzinger S
    Appl Opt; 1995 Oct; 34(28):6431-7. PubMed ID: 21060490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reflection aspherical microlenses for planar optics fabricated by electron-beam lithography.
    Shiono T; Ogawa H
    Opt Lett; 1992 Apr; 17(8):565-7. PubMed ID: 19794559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of a Microlens Array with Controlled Curvature by Thermally Curving Photosensitive Gel Film beneath Microholes.
    Zhang D; Xu Q; Fang C; Wang K; Wang X; Zhuang S; Dai B
    ACS Appl Mater Interfaces; 2017 May; 9(19):16604-16609. PubMed ID: 28452461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microlenses and Microlens Arrays Formed on a Glass Plate by Use of a CO(2) Laser.
    Wakaki M; Komachi Y; Kanai G
    Appl Opt; 1998 Feb; 37(4):627-31. PubMed ID: 18268633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manufacturing of a microlens array mold by a two-step method combining microindentation and precision polishing.
    Zhang L; Yi AY
    Appl Opt; 2020 Aug; 59(23):6945-6952. PubMed ID: 32788785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scanning white-light interferometry as a novel technique to quantify the surface roughness of micron-sized particles for inhalation.
    Adi S; Adi H; Chan HK; Young PM; Traini D; Yang R; Yu A
    Langmuir; 2008 Oct; 24(19):11307-12. PubMed ID: 18759384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.