These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 19547146)

  • 1. Localized and delocalized modes in coupled optical micropillar cavities.
    Karl M; Li S; Passow T; Löffler W; Kalt H; Hetterich M
    Opt Express; 2007 Jun; 15(13):8191-6. PubMed ID: 19547146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical properties of photonic molecules and elliptical pillars made of ZnSe-based microcavities.
    Sebald K; Seyfried M; Klembt S; Kruse C
    Opt Express; 2011 Sep; 19(20):19422-9. PubMed ID: 21996883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical properties of red emitting self-assembled InP/(Al0.20Ga0.80)0.51In0.49P quantum dot based micropillars.
    Schulz WM; Thomay T; Eichfelder M; Bommer M; Wiesner M; Rossbach R; Jetter M; Bratschitsch R; Leitenstorfer A; Michler P
    Opt Express; 2010 Jun; 18(12):12543-51. PubMed ID: 20588380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition and enhancement of the spontaneous emission of quantum dots in micropillar cavities with radial-distributed Bragg reflectors.
    Jakubczyk T; Franke H; Smoleński T; Sciesiek M; Pacuski W; Golnik A; Schmidt-Grund R; Grundmann M; Kruse C; Hommel D; Kossacki P
    ACS Nano; 2014 Oct; 8(10):9970-8. PubMed ID: 25181393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced directional quantum emission by tunable topological doubly resonant cavities.
    Xu C; Sheng C; Zhu S; Liu H
    Opt Express; 2021 May; 29(11):16727-16735. PubMed ID: 34154229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monolithic ZnTe-based pillar microcavities containing CdTe quantum dots.
    Kruse C; Pacuski W; Jakubczyk T; Kobak J; Gaj JA; Frank K; Schowalter M; Rosenauer A; Florian M; Jahnke F; Hommel D
    Nanotechnology; 2011 Jul; 22(28):285204. PubMed ID: 21654032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring the properties of quantum dot-micropillars by ultrafast optical injection of free charge carriers.
    Peinke E; Sattler T; Torelly GM; Souza PL; Perret S; Bleuse J; Claudon J; Vos WL; Gérard JM
    Light Sci Appl; 2021 Oct; 10(1):215. PubMed ID: 34667148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colloidal quantum dots in all-dielectric high-Q pillar microcavities.
    Kahl M; Thomay T; Kohnle V; Beha K; Merlein J; Hagner M; Halm A; Ziegler J; Nann T; Fedutik Y; Woggon U; Artemyev M; Pérez-Willard F; Leitenstorfer A; Bratschitsch R
    Nano Lett; 2007 Sep; 7(9):2897-900. PubMed ID: 17722946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-optical electromagnetically induced transparency using one-dimensional coupled microcavities.
    Naweed A; Goldberg D; Menon VM
    Opt Express; 2014 Jul; 22(15):18818-23. PubMed ID: 25089499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong Coupling beyond the Light-Line.
    Menghrajani KS; Barnes WL
    ACS Photonics; 2020 Sep; 7(9):2448-2459. PubMed ID: 33163580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of dressed states of distant atoms with delocalized photons in coupled-cavities quantum electrodynamics.
    Kato S; Német N; Senga K; Mizukami S; Huang X; Parkins S; Aoki T
    Nat Commun; 2019 Mar; 10(1):1160. PubMed ID: 30858381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localized Surface Plasmons Selectively Coupled to Resonant Light in Tubular Microcavities.
    Yin Y; Li S; Böttner S; Yuan F; Giudicatti S; Saei Ghareh Naz E; Ma L; Schmidt OG
    Phys Rev Lett; 2016 Jun; 116(25):253904. PubMed ID: 27391725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear localized modes in bandgap microcavities.
    Yang WX; Lin YY; Lee TD; Lee RK; Kivshar YS
    Opt Lett; 2010 Oct; 35(19):3207-9. PubMed ID: 20890335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of Si/SiO2 micropillar cavities for Purcell-enhanced single photon emission at 1.55 μm from InAs/InP quantum dots.
    Song HZ; Takemoto K; Miyazawa T; Takatsu M; Iwamoto S; Yamamoto T; Arakawa Y
    Opt Lett; 2013 Sep; 38(17):3241-4. PubMed ID: 23988924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong coupling of quantum dots in microcavities.
    Laussy FP; Del Valle E; Tejedor C
    Phys Rev Lett; 2008 Aug; 101(8):083601. PubMed ID: 18764613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collective Coupling of 3D Confined Optical Modes in Monolithic Twin Microtube Cavities Formed by Nanomembrane Origami.
    Wang X; Wang Z; Dong H; Saggau CN; Tang H; Tang M; Liu L; Baunack S; Bai L; Liu J; Yin Y; Ma L; Schmidt OG
    Nano Lett; 2022 Aug; 22(16):6692-6699. PubMed ID: 35939782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of high-Q coupled nanobeam cavity for label-free sensing.
    Yaseen MT; Yang YC; Shih MH; Chang YC
    Sensors (Basel); 2015 Oct; 15(10):25868-81. PubMed ID: 26473870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides.
    Javadi A; Maibom S; Sapienza L; Thyrrestrup H; García PD; Lodahl P
    Opt Express; 2014 Dec; 22(25):30992-1001. PubMed ID: 25607048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum dot dipole orientation and excitation efficiency of micropillar modes.
    Silva AG; Parra-Murillo CA; Valentim PT; Morais JS; Plentz F; Guimarães PS; Vinck-Posada H; Rodriguez BA; Skolnick MS; Tahraoui A; Hopkinson M
    Opt Express; 2008 Nov; 16(23):19201-7. PubMed ID: 19582012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiwavelength ultralow-threshold lasing in quantum dot photonic crystal microcavities.
    Chakravarty S; Bhattacharya P; Chakrabarti S; Mi Z
    Opt Lett; 2007 May; 32(10):1296-8. PubMed ID: 17440566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.