These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19547166)

  • 1. A moderate-spectral-resolution transmittance model based on fitting the line-by-line calculation.
    Wei H; Chen X; Rao R; Wang Y; Yang P
    Opt Express; 2007 Jun; 15(13):8360-70. PubMed ID: 19547166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of the Curtis-Godson approximation in calculations of radiant heating by inhomogeneous hot gases.
    Krakow B; Babrov HJ; Maclay GJ; Shabott AL
    Appl Opt; 1966 Nov; 5(11):1791-800. PubMed ID: 20057628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic Errors that are Due to the Monochromatic-Equivalent Radiative Transfer Approximation in Thermal Emission Problems.
    Turner DS
    Appl Opt; 2000 Nov; 39(31):5663-70. PubMed ID: 18354562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast radiative-transfer model based on the correlated k-distribution method for a high-resolution satellite sounder.
    Mano Y; Ishimoto H
    Appl Opt; 2004 Dec; 43(34):6304-12. PubMed ID: 15619841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast transmittance model for satellite sounding.
    Rayer PJ
    Appl Opt; 1995 Nov; 34(31):7387-94. PubMed ID: 21060613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Principal component-based radiative transfer model for hyperspectral sensors: theoretical concept.
    Liu X; Smith WL; Zhou DK; Larar A
    Appl Opt; 2006 Jan; 45(1):201-9. PubMed ID: 16422339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atmospheric transmittance of an absorbing gas. 3: A computationally fast and accurate transmittance model for absorbing gases with variable mixing ratios.
    McMillin LM; Fleming HE; Hill ML
    Appl Opt; 1979 May; 18(10):1600-6. PubMed ID: 20212899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atmospheric transmittance of an absorbing gas. 2: A computationally fast and accurate transmittance model for slant paths at different zenith angles.
    Fleming HE; McMillin LM
    Appl Opt; 1977 May; 16(5):1366-70. PubMed ID: 20168702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of radiances observed from satellite and aircraft with calculations by using two atmospheric transmittance models.
    Murty DG; Smith WL; Woolf HM; Hayden CM
    Appl Opt; 1993 Mar; 32(9):1620-8. PubMed ID: 20820294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensor-based clear and cloud radiance calculations in the community radiative transfer model.
    Liu Q; Xue Y; Li C
    Appl Opt; 2013 Jul; 52(20):4981-90. PubMed ID: 23852214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the FASCODE model and its H(2)O continuum based on long-path atmospheric transmission measurements in the 4.5-11.5-µm region.
    Thériault JM; Roney PL; -Germain DS; Revercomb HE; Knuteson RO; Smith WL
    Appl Opt; 1994 Jan; 33(3):323-33. PubMed ID: 20862021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast radiative transfer model for simulation of infrared atmospheric sounding interferometer radiances.
    Matricardi M; Saunders R
    Appl Opt; 1999 Sep; 38(27):5679-91. PubMed ID: 18324079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of linear forms of the radiative transfer equation with analytic Jacobians.
    Huang B; Smith WL; Huang HL; Woolf HM
    Appl Opt; 2002 Jul; 41(21):4209-19. PubMed ID: 12148748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral modelling near the 1.6 μm window for satellite based estimation of CO2.
    Prasad P; Rastogi S; Singh RP; Panigrahy S
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 117():330-9. PubMed ID: 23998965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High resolution atmospheric transmission calculations down to 28.7 km in the 200-243-nm spectral range.
    Cann MW; Nicholls RW; Evans WF; Kohl JL; Kurucz R; Parkinson WH; Reeves EM
    Appl Opt; 1979 Apr; 18(7):964-77. PubMed ID: 20208861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative to the effective transmittance approach for the calculation of polychromatic transmittances in rapid transmittance models.
    Xiong X; McMillin LM
    Appl Opt; 2005 Jan; 44(1):67-76. PubMed ID: 15662887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atmospheric transmittance of an absorbing gas. 7. Further improvements to the OPTRAN 6 approach.
    McMillin LM; Xiong X; Han Y; Kleespies TJ; Van Delst P
    Appl Opt; 2006 Mar; 45(9):2028-34. PubMed ID: 16579573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 5-cm(-1) band model option to LOWTRAN5.
    Robertson DC; Bernstein LS; Haimes R; Wunderlich J; Vega L
    Appl Opt; 1981 Sep; 20(18):3218-26. PubMed ID: 20333124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atmospheric temperature sensing with a multiorder Fabry-Perot interferometer.
    Wang J; Drayson SR; Hayes PB
    Appl Opt; 1989 Dec; 28(23):5038-46. PubMed ID: 20555996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Atmospheric Influences Analysis on the Satellite Passive Microwave Remote Sensing].
    Qiu YB; Shi LJ; Shi JC; Zhao SJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Feb; 36(2):310-5. PubMed ID: 27209721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.