These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19547233)

  • 1. Emission characteristics of ion-irradiated In(0.53)Ga(0.47)As based photoconductive antennas excited at 1.55 microm.
    Mangeney J; Chimot N; Meignien L; Zerounian N; Crozat P; Blary K; Lampin JF; Mounaix P
    Opt Express; 2007 Jul; 15(14):8943-50. PubMed ID: 19547233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs.
    Tani M; Matsuura S; Sakai K; Nakashima S
    Appl Opt; 1997 Oct; 36(30):7853-9. PubMed ID: 18264312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of two-photon absorption on terahertz radiation generated by femtosecond-laser excited photoconductive antennas.
    Lee CK; Yang CS; Lin SH; Huang SH; Wada O; Pan CL
    Opt Express; 2011 Nov; 19(24):23689-97. PubMed ID: 22109395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays.
    Yardimci NT; Lu H; Jarrahi M
    Appl Phys Lett; 2016 Nov; 109(19):191103. PubMed ID: 27916999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Integrated Germanium-Based THz Impulse Radiator with an Optical Waveguide Coupled Photoconductive Switch in Silicon.
    Chen P; Hosseini M; Babakhani A
    Micromachines (Basel); 2019 May; 10(6):. PubMed ID: 31159233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femtosecond response of a free-standing LT-GaAs photoconductive switch.
    Zheng X; Xu Y; Sobolewski R; Adam R; Mikulics M; Siegel M; Kordos P
    Appl Opt; 2003 Mar; 42(9):1726-31. PubMed ID: 12665104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of the contact metallization on the performance of photoconductive THz antennas.
    Vieweg N; Mikulics M; Scheller M; Ezdi K; Wilk R; Hübers HW; Koch M
    Opt Express; 2008 Nov; 16(24):19695-705. PubMed ID: 19030055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative comparison of terahertz emission from (100) InAs surfaces and a GaAs large-aperture photoconductive switch at high fluences.
    Reid M; Fedosejevs R
    Appl Opt; 2005 Jan; 44(1):149-53. PubMed ID: 15662896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructure-Enhanced Photoconductive Terahertz Emission and Detection.
    Yardimci NT; Jarrahi M
    Small; 2018 Nov; 14(44):e1802437. PubMed ID: 30156383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation.
    Jooshesh A; Fesharaki F; Bahrami-Yekta V; Mahtab M; Tiedje T; Darcie TE; Gordon R
    Opt Express; 2017 Sep; 25(18):22140-22148. PubMed ID: 29041502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency-domain terahertz spectroscopy using long-carrier-lifetime photoconductive antennas.
    Lu PK; Jarrahi M
    Opt Express; 2023 Mar; 31(6):9319-9329. PubMed ID: 37157504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous wave terahertz radiation from antennas fabricated on C¹²-irradiated semi-insulating GaAs.
    Deshmukh P; Mendez-Aller M; Singh A; Pal S; Prabhu SS; Nanal V; Pillay RG; Döhler GH; Preu S
    Opt Lett; 2015 Oct; 40(19):4540-3. PubMed ID: 26421576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonics-enhanced photoconductive terahertz detector pumped by Ytterbium-doped fiber laser.
    Turan D; Yardimci NT; Jarrahi M
    Opt Express; 2020 Feb; 28(3):3835-3845. PubMed ID: 32122045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon irradiated semi insulating GaAs for photoconductive terahertz pulse detection.
    Singh A; Pal S; Surdi H; Prabhu SS; Mathimalar S; Nanal V; Pillay RG; Döhler GH
    Opt Express; 2015 Mar; 23(5):6656-61. PubMed ID: 25836882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multichannel terahertz time-domain spectroscopy system at 1030 nm excitation wavelength.
    Brahm A; Wilms A; Dietz RJ; Göbel T; Schell M; Notni G; Tünnermann A
    Opt Express; 2014 Jun; 22(11):12982-93. PubMed ID: 24921495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of substrate characteristics on performance of large area plasmonic photoconductive emitters.
    Yardimci NT; Salas R; Krivoy EM; Nair HP; Bank SR; Jarrahi M
    Opt Express; 2015 Dec; 23(25):32035-43. PubMed ID: 26698994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Terahertz emission from lateral photo-Dember currents.
    Klatt G; Hilser F; Qiao W; Beck M; Gebs R; Bartels A; Huska K; Lemmer U; Bastian G; Johnston MB; Fischer M; Faist J; Dekorsy T
    Opt Express; 2010 Mar; 18(5):4939-47. PubMed ID: 20389505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90dB dynamic range.
    Dietz RJ; Globisch B; Roehle H; Stanze D; Göbel T; Schell M
    Opt Express; 2014 Aug; 22(16):19411-22. PubMed ID: 25321025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Next generation 1.5 microm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers.
    Roehle H; Dietz RJ; Hensel HJ; Böttcher J; Künzel H; Stanze D; Schell M; Sartorius B
    Opt Express; 2010 Feb; 18(3):2296-301. PubMed ID: 20174058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carrier dynamics of terahertz emission from low-temperature-grown gaas.
    Liu D; Qin J
    Appl Opt; 2003 Jun; 42(18):3678-83. PubMed ID: 12833974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.