These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19547346)

  • 21. All-optical pulse generation based on gain-induced four-wave mixing in a semiconductor optical amplifier.
    Li F; Helmy AS
    Opt Lett; 2013 Apr; 38(8):1241-3. PubMed ID: 23595445
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Slow-light in a vertical-cavity semiconductor optical amplifier.
    Laurand N; Calvez S; Dawson MD; Kelly AE
    Opt Express; 2006 Jul; 14(15):6858-63. PubMed ID: 19516868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Picosecond and femtosecond asymmetric switching using a semiconductor optical amplifier-based Mach-Zehnder interferometer.
    Khorrami Y; Ahmadi V; Razaghi M; Das N
    Appl Opt; 2018 Mar; 57(7):1634-1639. PubMed ID: 29522011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental demonstration of enhanced slow and fast light by forced coherent population oscillations in a semiconductor optical amplifier.
    Berger P; Bourderionnet J; de Valicourt G; Brenot R; Bretenaker F; Dolfi D; Alouini M
    Opt Lett; 2010 Jul; 35(14):2457-9. PubMed ID: 20634862
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 80 Gb/s wavelength conversion using a quantum-dot semiconductor optical amplifier and optical filtering.
    Meuer C; Schmidt-Langhorst C; Bonk R; Schmeckebier H; Arsenijević D; Fiol G; Galperin A; Leuthold J; Schubert C; Bimberg D
    Opt Express; 2011 Mar; 19(6):5134-42. PubMed ID: 21445148
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Voltage-controlled slow light in an integrated semiconductor structure with net gain.
    Ohman F; Yvind K; Mørk J
    Opt Express; 2006 Oct; 14(21):9955-62. PubMed ID: 19529389
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bit rate and pulse width dependence of four-wave mixing of short optical pulses in semiconductor optical amplifiers.
    Diez S; Mecozzi A; Mørk J
    Opt Lett; 1999 Dec; 24(23):1675-7. PubMed ID: 18079899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An efficient optical knob from slow light to fast light in a coupled nanomechanical resonator-quantum dot system.
    Li JJ; Zhu KD
    Opt Express; 2009 Oct; 17(22):19874-81. PubMed ID: 19997209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon.
    Ko WS; Bhattacharya I; Tran TD; Ng KW; Adair Gerke S; Chang-Hasnain C
    Sci Rep; 2016 Sep; 6():33368. PubMed ID: 27659796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mode coherence measurements across a 1.5 THz spectral bandwidth of a passively mode-locked quantum dash laser.
    Watts R; Rosales R; Lelarge F; Ramdane A; Barry L
    Opt Lett; 2012 May; 37(9):1499-501. PubMed ID: 22555717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coherent control in a semiconductor optical amplifier operating at room temperature.
    Capua A; Karni O; Eisenstein G; Sichkovskyi V; Ivanov V; Reithmaier JP
    Nat Commun; 2014 Sep; 5():5025. PubMed ID: 25242121
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 320 Gbit/s wavelength conversion using four-wave mixing in quantum-dot semiconductor optical amplifiers.
    Matsuura M; Raz O; Gomez-Agis F; Calabretta N; Dorren HJ
    Opt Lett; 2011 Aug; 36(15):2910-2. PubMed ID: 21808355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancing slow- and fast-light effects in quantum-dot semiconductor waveguides through ultrafast dynamics.
    Chen Y; Mørk J
    Opt Lett; 2010 Mar; 35(5):697-9. PubMed ID: 20195323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 40 Gb/s wavelength conversion via four-wave mixing in a quantum-dot semiconductor optical amplifier.
    Meuer C; Schmidt-Langhorst C; Schmeckebier H; Fiol G; Arsenijević D; Schubert C; Bimberg D
    Opt Express; 2011 Feb; 19(4):3788-98. PubMed ID: 21369203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering.
    Dahan D; Eisenstein G
    Opt Express; 2005 Aug; 13(16):6234-49. PubMed ID: 19498636
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications.
    Shen C; Ng TK; Lee C; Nakamura S; Speck JS; DenBaars SP; Alyamani AY; El-Desouki MM; Ooi BS
    Opt Express; 2018 Mar; 26(6):A219-A226. PubMed ID: 29609284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers.
    Xue W; Sales S; Capmany J; Mørk J
    Opt Lett; 2009 Apr; 34(7):929-31. PubMed ID: 19340174
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Broad-area vertical cavity semiconductor optical amplifiers].
    Sun CL; Liang XM; Qin L; Jia LH; Ning YQ; Wang LJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 May; 30(5):1413-6. PubMed ID: 20672645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers.
    Xue W; Sales S; Capmany J; Mørk J
    Opt Express; 2010 Mar; 18(6):6156-63. PubMed ID: 20389638
    [TBL] [Abstract][Full Text] [Related]  

  • 40. All-optical frequency upconversion of a quasi optical single sideband signal utilizing a nonlinear semiconductor optical amplifier for radio-over-fiber applications.
    Park M; Song JI
    Opt Express; 2011 Nov; 19(24):24499-506. PubMed ID: 22109476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.