These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 19547378)

  • 1. Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock.
    Zhang Q; Xie X; Takesue H; Nam SW; Langrock C; Fejer MM; Yamamoto Y
    Opt Express; 2007 Aug; 15(16):10288-93. PubMed ID: 19547378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of 10-GHz clock sequential time-bin entanglement.
    Zhang Q; Langrock C; Takesue H; Xie X; Fejer M; Yamamoto Y
    Opt Express; 2008 Mar; 16(5):3293-8. PubMed ID: 18542417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of broadband correlated photon-pairs in short thin-film lithium-niobate waveguides.
    Elkus BS; Abdelsalam K; Rao A; Velev V; Fathpour S; Kumar P; Kanter GS
    Opt Express; 2019 Dec; 27(26):38521-38531. PubMed ID: 31878617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ2 processes in a periodically poled LiNbO3 ridge waveguide.
    Arahira S; Namekata N; Kishimoto T; Yaegashi H; Inoue S
    Opt Express; 2011 Aug; 19(17):16032-43. PubMed ID: 21934967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of time-bin entangled photon pairs by cascaded second-order nonlinearity in a single periodically poled LiNbO(3) waveguide.
    Hunault M; Takesue H; Tadanaga O; Nishida Y; Asobe M
    Opt Lett; 2010 Apr; 35(8):1239-41. PubMed ID: 20410979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors.
    Honjo T; Takesue H; Kamada H; Nishida Y; Tadanaga O; Asobe M; Inoue K
    Opt Express; 2007 Oct; 15(21):13957-64. PubMed ID: 19550669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband telecom photon pairs from a fiber-integrated PPLN ridge waveguide.
    Kumar Yadav V; Venkataraman V; Ghosh J
    Opt Lett; 2022 Oct; 47(19):5132-5135. PubMed ID: 36181204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlated twin-photon generation in a silicon nitride loaded thin film PPLN waveguide.
    Henry A; Barral D; Zaquine I; Boes A; Mitchell A; Belabas N; Bencheikh K
    Opt Express; 2023 Feb; 31(5):7277-7289. PubMed ID: 36859863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 10-GHz clock differential phase shift quantum key distribution experiment.
    Takesue H; Diamanti E; Langrock C; Fejer MM; Yamamoto Y
    Opt Express; 2006 Oct; 14(20):9522-30. PubMed ID: 19529339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of energy-time entangled photon pairs in 1.5-mum band with periodically poled lithium niobate waveguide.
    Honjo T; Takesue H; Inoue K
    Opt Express; 2007 Feb; 15(4):1679-83. PubMed ID: 19532403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum-correlated photon-pair generation via cascaded nonlinearity in an ultra-compact lithium-niobate nano-waveguide.
    Elkus BS; Abdelsalam K; Fathpour S; Kumar P; Kanter GS
    Opt Express; 2020 Dec; 28(26):39963-39975. PubMed ID: 33379534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-degenerated sequential time-bin entanglement generation using periodically poled KTP waveguide.
    Ma L; Slattery O; Chang T; Tang X
    Opt Express; 2009 Aug; 17(18):15799-807. PubMed ID: 19724580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides written by femtosecond laser pulses.
    Huang Z; Tu C; Zhang S; Li Y; Lu F; Fan Y; Li E
    Opt Lett; 2010 Mar; 35(6):877-9. PubMed ID: 20237629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Quality Entangled Photon Pair Generation in Periodically Poled Thin-Film Lithium Niobate Waveguides.
    Zhao J; Ma C; Rüsing M; Mookherjea S
    Phys Rev Lett; 2020 Apr; 124(16):163603. PubMed ID: 32383916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Demonstration of a Hybrid-Quantum-Emitter Producing Individual Entangled Photon Pairs in the Telecom Band.
    Chen G; Zou Y; Zhang WH; Zhang ZH; Zhou ZQ; He DY; Tang JS; Liu BH; Yu Y; Zha GW; Ni HQ; Niu ZC; Han YJ; Li CF; Guo GC
    Sci Rep; 2016 May; 6():26680. PubMed ID: 27225881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electro-optic guided-to-radiation mode conversion in annealed proton-exchanged PPLN waveguides.
    Chang JW; Chen YH; Tseng QH; Chang WK; Deng SL; Hsieh CS
    Opt Express; 2010 Nov; 18(24):24706-14. PubMed ID: 21164817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of octave-spanning spectra inside reverse-photon-exchanged periodically poled lithium niobate waveguides.
    Langrock C; Fejer MM; Hartl I; Fermann ME
    Opt Lett; 2007 Sep; 32(17):2478-80. PubMed ID: 17767277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entanglement distribution over 300 km of fiber.
    Inagaki T; Matsuda N; Tadanaga O; Asobe M; Takesue H
    Opt Express; 2013 Oct; 21(20):23241-9. PubMed ID: 24104238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate.
    Parameswaran KR; Route RK; Kurz JR; Roussev RV; Fejer MM; Fujimura M
    Opt Lett; 2002 Feb; 27(3):179-81. PubMed ID: 18007748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1.5- mum single photon counting using polarization-independent up-conversion detector.
    Takesue H; Diamanti E; Langrock C; Fejer MM; Yamamoto Y
    Opt Express; 2006 Dec; 14(26):13067-72. PubMed ID: 19532202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.