These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
431 related articles for article (PubMed ID: 19547419)
1. Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution. Berrocal E; Sedarsky DL; Paciaroni ME; Meglinski IV; Linne MA Opt Express; 2007 Aug; 15(17):10649-65. PubMed ID: 19547419 [TBL] [Abstract][Full Text] [Related]
2. Laser light scattering in turbid media Part II: Spatial and temporal analysis of individual scattering orders via Monte Carlo simulation. Berrocal E; Sedarsky DL; Paciaroni ME; Meglinski IV; Linne MA Opt Express; 2009 Aug; 17(16):13792-809. PubMed ID: 19654786 [TBL] [Abstract][Full Text] [Related]
3. Multi-scattering software part II: experimental validation for the light intensity distribution. Frantz D; Jönsson J; Berrocal E Opt Express; 2022 Jan; 30(2):1261-1279. PubMed ID: 35209290 [TBL] [Abstract][Full Text] [Related]
4. Crossed source-detector geometry for a novel spray diagnostic: Monte Carlo simulation and analytical results. Berrocal E; Churmakov DY; Romanov VP; Jermy MC; Meglinski IV Appl Opt; 2005 May; 44(13):2519-29. PubMed ID: 15881059 [TBL] [Abstract][Full Text] [Related]
5. Monte Carlo modeling of optical coherence tomography imaging through turbid media. Lu Q; Gan X; Gu M; Luo Q Appl Opt; 2004 Mar; 43(8):1628-37. PubMed ID: 15046164 [TBL] [Abstract][Full Text] [Related]
6. New model for light propagation in highly inhomogeneous polydisperse turbid media with applications in spray diagnostics. Berrocal E; Meglinski I; Jermy M Opt Express; 2005 Nov; 13(23):9181-95. PubMed ID: 19503117 [TBL] [Abstract][Full Text] [Related]
7. Spatial distribution of single-photon and two-photon fluorescence light in scattering media: Monte Carlo simulation. Gan X; Gu M Appl Opt; 2000 Apr; 39(10):1575-9. PubMed ID: 18345054 [TBL] [Abstract][Full Text] [Related]
8. Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids. Hart VP; Doyle TE Appl Opt; 2013 Sep; 52(25):6220-9. PubMed ID: 24085080 [TBL] [Abstract][Full Text] [Related]
9. Quantitative image contrast enhancement in time-gated transillumination of scattering media. Sedarsky D; Berrocal E; Linne M Opt Express; 2011 Jan; 19(3):1866-83. PubMed ID: 21369002 [TBL] [Abstract][Full Text] [Related]
10. Scattering delay time of Mie scatterers determined from steady-state and time-resolved optical spectroscopy. Willmann S; Terenji A; Busse H; Yaroslavsky IV; Yaroslavsky AN; Schwarzmaier HJ; Hering P J Opt Soc Am A Opt Image Sci Vis; 2000 Apr; 17(4):745-9. PubMed ID: 10757182 [TBL] [Abstract][Full Text] [Related]
11. Scattering contribution to the double-pass PSF using Monte Carlo simulations. Christaras D; Ginis H; Pennos A; Artal P Ophthalmic Physiol Opt; 2017 May; 37(3):342-346. PubMed ID: 28439979 [TBL] [Abstract][Full Text] [Related]
12. Decomposition of a laser-Doppler spectrum for estimation of speed distribution of particles moving in an optically turbid medium: Monte Carlo validation study. Liebert A; Zołek N; Maniewski R Phys Med Biol; 2006 Nov; 51(22):5737-51. PubMed ID: 17068362 [TBL] [Abstract][Full Text] [Related]
13. Light scattering regimes along the optical axis in turbid media. Campbell SD; O'connell AK; Menon S; Su Q; Grobe R Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061909. PubMed ID: 17280098 [TBL] [Abstract][Full Text] [Related]
14. Spatial and angular distribution of light incident on coatings using Mie-scattering Monte Carlo simulations. Yamada M; Butts MD; Kalla KK J Cosmet Sci; 2005; 56(3):193-204. PubMed ID: 16116524 [TBL] [Abstract][Full Text] [Related]
15. Empirical model for target depth estimation used in the time-domain subsurface imaging. Sormaz M; Jenny P J Opt Soc Am A Opt Image Sci Vis; 2012 Oct; 29(10):2174-80. PubMed ID: 23201666 [TBL] [Abstract][Full Text] [Related]
16. Light backscattering polarization patterns from turbid media: theory and experiment. Raković MJ; Kattawar GW; Mehrubeoğlu MB; Cameron BD; Wang LV; Rastegar S; Coté GL Appl Opt; 1999 May; 38(15):3399-408. PubMed ID: 18319938 [TBL] [Abstract][Full Text] [Related]
17. Depolarization of light in turbid media: a scattering event resolved Monte Carlo study. Guo X; Wood MF; Ghosh N; Vitkin IA Appl Opt; 2010 Jan; 49(2):153-62. PubMed ID: 20062501 [TBL] [Abstract][Full Text] [Related]
18. Confocal microscopy in turbid media. Schmitt JM; Knüttel A; Yadlowsky M J Opt Soc Am A Opt Image Sci Vis; 1994 Aug; 11(8):2226-35. PubMed ID: 7931759 [TBL] [Abstract][Full Text] [Related]
19. Temporal visualization of femtosecond laser pulses with single-edge transport in turbid media via Monte Carlo simulation. Ren Y; Jian J; Tan W; Wang J; Chen T; Xia W Opt Lett; 2021 May; 46(10):2284-2287. PubMed ID: 33988565 [TBL] [Abstract][Full Text] [Related]
20. Analysis of multiple scattering suppression using structured laser illumination planar imaging in scattering and fluorescing media. Kristensson E; Araneo L; Berrocal E; Manin J; Richter M; Aldén M; Linne M Opt Express; 2011 Jul; 19(14):13647-63. PubMed ID: 21747521 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]