These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 19547422)

  • 1. Phosphorescence lifetime based oxygen micro-sensing using a digital micromirror device.
    Chao SH; Holl MR; McQuaide SC; Ren TT; Gales SA; Meldrum DR
    Opt Express; 2007 Aug; 15(17):10681-9. PubMed ID: 19547422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-addressable measurements of cellular oxygen consumption rates in microwell arrays based on phase-based phosphorescence lifetime detection.
    Huang SH; Hsu YH; Wu CW; Wu CJ
    Biomicrofluidics; 2012; 6(4):44118. PubMed ID: 24348889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-addressable measurement of in vivo tissue oxygenation in an unanesthetized zebrafish embryo via phase-based phosphorescence lifetime detection.
    Huang SH; Yu CH; Chien YL
    Sensors (Basel); 2015 Apr; 15(4):8146-62. PubMed ID: 25856326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digital micromirror devices: principles and applications in imaging.
    Bansal V; Saggau P
    Cold Spring Harb Protoc; 2013 May; 2013(5):404-11. PubMed ID: 23637366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging.
    Zhao Q; Zhou X; Cao T; Zhang KY; Yang L; Liu S; Liang H; Yang H; Li F; Huang W
    Chem Sci; 2015 Mar; 6(3):1825-1831. PubMed ID: 28694947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structurally integrated organic light emitting device-based sensors for gas phase and dissolved oxygen.
    Shinar R; Zhou Z; Choudhury B; Shinar J
    Anal Chim Acta; 2006 May; 568(1-2):190-9. PubMed ID: 17761260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative determination of localized tissue oxygen concentration in vivo by two-photon excitation phosphorescence lifetime measurements.
    Mik EG; van Leeuwen TG; Raat NJ; Ince C
    J Appl Physiol (1985); 2004 Nov; 97(5):1962-9. PubMed ID: 15247164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging of neurosphere oxygenation with phosphorescent probes.
    Dmitriev RI; Zhdanov AV; Nolan YM; Papkovsky DB
    Biomaterials; 2013 Dec; 34(37):9307-17. PubMed ID: 24016849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Phosphorescence Quenching-Based Intelligent Dissolved Oxygen Sensor on an Optofluidic Platform.
    Wang F; Chen L; Zhu J; Hu X; Yang Y
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33800237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressed sensing hyperspectral imaging in the 0.9-2.5  μm shortwave infrared wavelength range using a digital micromirror device and InGaAs linear array detector.
    Arnob MMP; Nguyen H; Han Z; Shih WC
    Appl Opt; 2018 Jun; 57(18):5019-5024. PubMed ID: 30117961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Digital micromirror device camera with per-pixel coded exposure for high dynamic range imaging.
    Feng W; Zhang F; Wang W; Xing W; Qu X
    Appl Opt; 2017 May; 56(13):3831-3840. PubMed ID: 28463276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexibility in proteins: tuning the sensitivity to O2 diffusion by varying the lifetime of a phosphorescent sensor in horseradish peroxidase.
    Nibbs J; Vinogradov SA; Vanderkooi JM; Zelent B
    Photochem Photobiol; 2004; 80():36-40. PubMed ID: 15339214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanotribological characterization of digital micromirror devices using an atomic force microscope.
    Liu H; Bhushan B
    Ultramicroscopy; 2004 Aug; 100(3-4):391-412. PubMed ID: 15231332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence Lifetime Macro Imager for Biomedical Applications.
    Sen R; Zhdanov AV; Devoy C; Tangney M; Hirvonen LM; Nomerotski A; Papkovsky DB
    J Vis Exp; 2023 Apr; (194):. PubMed ID: 37092825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High resolution imaging of intracellular oxygen concentration by phosphorescence lifetime.
    Kurokawa H; Ito H; Inoue M; Tabata K; Sato Y; Yamagata K; Kizaka-Kondoh S; Kadonosono T; Yano S; Inoue M; Kamachi T
    Sci Rep; 2015 Jun; 5():10657. PubMed ID: 26065366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lutetium-containing sinoporphyrin sodium: a water-soluble photosensitizer with balanced fluorescence and phosphorescence for ratiometric oxygen sensing.
    Zang L; Zhao H
    RSC Adv; 2020 Sep; 10(54):32938-32945. PubMed ID: 35516503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal focusing-based multiphoton excitation microscopy via digital micromirror device.
    Yih JN; Hu YY; Sie YD; Cheng LC; Lien CH; Chen SJ
    Opt Lett; 2014 Jun; 39(11):3134-7. PubMed ID: 24875995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polystyrene Oxygen Optodes Doped with Ir(III) and Pd(II) meso-Tetrakis(pentafluorophenyl)porphyrin Using an LED-Based High-Sensitivity Phosphorimeter.
    Filho AFM; Gewehr PM; Maia JM; Jakubiak DR
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29914139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confocal Luminescence Lifetime Imaging with Variable Scan Velocity and Its Application to Oxygen Sensing.
    Petrášek Z; Bolivar JM; Nidetzky B
    Anal Chem; 2016 Nov; 88(21):10736-10743. PubMed ID: 27690248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time monitoring of luminescent lifetime changes of PtOEP oxygen sensing film with LED/photodiode-based time-domain lifetime device.
    Ji S; Wu W; Wu Y; Zhao T; Zhou F; Yang Y; Zhang X; Liang X; Wu W; Chi L; Wang Z; Zhao J
    Analyst; 2009 May; 134(5):958-65. PubMed ID: 19381391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.