These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19547505)

  • 1. Optical near-field analysis of spherical metals: Application of the FDTD method combined with the ADE method.
    Yamaguchi T; Hinata T
    Opt Express; 2007 Sep; 15(18):11481-91. PubMed ID: 19547505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of subwavelength metallic gratings using a new implementation of the recursive convolution finite-difference time-domain algorithm.
    Banerjee S; Hoshino T; Cole JB
    J Opt Soc Am A Opt Image Sci Vis; 2008 Aug; 25(8):1921-8. PubMed ID: 18677354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The HIE-FDTD Method for Simulating Dispersion Media Represented by Drude, Debye, and Lorentz Models.
    Chen J; Mou C
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Modeling of Sub-Wavelength Anti-Reflective Structures for Solar Module Applications.
    Han K; Chang CH
    Nanomaterials (Basel); 2014 Jan; 4(1):87-128. PubMed ID: 28348287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of Bessel beam sources in FDTD.
    Wu Z; Han Y; Wang J; Cui Z
    Opt Express; 2018 Oct; 26(22):28727-28737. PubMed ID: 30470045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromagnetic simulation of quantum well structures.
    Shi S; Jin G; Prather DW
    Opt Express; 2006 Mar; 14(6):2459-72. PubMed ID: 19503585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective optical response of silicon to sunlight in the finite-difference time-domain method.
    Deinega A; John S
    Opt Lett; 2012 Jan; 37(1):112-4. PubMed ID: 22212808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation of dispersion models in the split-field-finite-difference-time-domain algorithm for the study of metallic periodic structures at oblique incidence.
    Belkhir A; Arar O; Benabbes SS; Lamrous O; Baida FI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046705. PubMed ID: 20481858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-opals interaction modeling by direct numerical solution of Maxwell's equations.
    Vaccari A; Lesina AC; Cristoforetti L; Chiappini A; Crema L; Calliari L; Ramunno L; Berini P; Ferrari M
    Opt Express; 2014 Nov; 22(22):27739-49. PubMed ID: 25401918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ADE-FDTD Scattered-Field Formulation for Dispersive Materials.
    Kong SC; Simpson JJ; Backman V
    IEEE Microw Wirel Compon Lett; 2008 Jan; 18(1):4-6. PubMed ID: 19844602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Models of near-field spectroscopic studies: comparison between Finite-Element and Finite-Difference methods.
    Grosges T; Vial A; Barchiesi D
    Opt Express; 2005 Oct; 13(21):8483-97. PubMed ID: 19498878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Stability of Modified Lorentz FDTD Unified From Various Dispersion Models.
    Park J; Jung KY
    Opt Express; 2021 Jul; 29(14):21639-21654. PubMed ID: 34265947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization-current-based, finite-difference time-domain, near-to-far-field transformation.
    Zeng Y; Moloney JV
    Opt Lett; 2009 May; 34(10):1600-2. PubMed ID: 19448834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiation forces on a Mie particle in the evanescent field of a resonance waveguide structure.
    Rezaei S; Azami D; Kheirandish F; Hassanzadeh A
    J Opt Soc Am A Opt Image Sci Vis; 2022 Nov; 39(11):2054-2062. PubMed ID: 36520702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic and photonic scattering and near fields of nanoparticles.
    Schmid M; Andrae P; Manley P
    Nanoscale Res Lett; 2014 Jan; 9(1):50. PubMed ID: 24475923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementing the near- to far-field transformation in the finite-difference time-domain method.
    Zhai PW; Lee YK; Kattawar GW; Yang P
    Appl Opt; 2004 Jun; 43(18):3738-46. PubMed ID: 15218616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional efficient dispersive alternating-direction-implicit finite-difference time-domain algorithm using a quadratic complex rational function.
    Kim EK; Ha SG; Lee J; Park YB; Jung KY
    Opt Express; 2015 Jan; 23(2):873-81. PubMed ID: 25835847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-wave electromagentic analysis of a plasmonic nanoparticle separated from a plasmonic film by a thin spacer layer.
    Trivedi R; Thomas A; Dhawan A
    Opt Express; 2014 Aug; 22(17):19970-89. PubMed ID: 25321207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scattered field formulation of finite difference time domain for a focused light beam in dense media with lossy materials.
    Challener W; Sendur I; Peng C
    Opt Express; 2003 Nov; 11(23):3160-70. PubMed ID: 19471441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mie scattering by a uniaxial anisotropic sphere.
    Geng YL; Wu XB; Li LW; Guan BR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056609. PubMed ID: 15600781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.