These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19547520)

  • 1. Enhancement and tunability of active plasmonic by multilayer grating coupled emission.
    Chiu NF; Yu C; Nien SY; Lee JH; Kuan CH; Wu KC; Lee CK; Lin CW
    Opt Express; 2007 Sep; 15(18):11608-15. PubMed ID: 19547520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced metal nanostructure design for surface plasmon photonic bandgap biosensor device.
    Chiu NF; Nien SY; Yu C; Lee JH; Lin CW
    Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6521-4. PubMed ID: 17959441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic plasmon-emitting diodes for detecting refractive index variation.
    Chiu NF; Cheng CJ; Huang TY
    Sensors (Basel); 2013 Jun; 13(7):8340-51. PubMed ID: 23812346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate Oxide Layer Thickness Optimization for a Dual-Width Plasmonic Grating for Surface-Enhanced Raman Spectroscopy (SERS) Biosensor Applications.
    Bauman SJ; Brawley ZT; Darweesh AA; Herzog JB
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28665308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic-based plasmonic emitters for sensing applications.
    Chiu NF; Huang TY; Kuo CC; Lin CW; Lee JH
    Appl Opt; 2013 Mar; 52(7):1383-8. PubMed ID: 23458789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunability of hybridized plasmonic waveguide mediated by surface plasmon polaritons.
    Jiang MM; Chen HY; Shan CX; Shen DZ
    Phys Chem Chem Phys; 2014 Aug; 16(30):16233-40. PubMed ID: 24968699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of surface plasmons and excited optical modes in metal/dielectric grating stacks.
    Fan RH; Qi DX; Hu Q; Qin L; Peng RW; Wang M
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1017-21. PubMed ID: 23646562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-Narrow SPP Generation from Ag Grating.
    Stocker G; Spettel J; Dao TD; Tortschanoff A; Jannesari R; Pühringer G; Saeidi P; Dubois F; Fleury C; Consani C; Grille T; Aschauer E; Jakoby B
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical source of surface plasmon polaritons based on hybrid Au-GaAs QW structures.
    Li J; Wei H; Shen H; Wang Z; Zhao Z; Duan X; Xu H
    Nanoscale; 2013 Sep; 5(18):8494-9. PubMed ID: 23900526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic rainbow trapping by a graphene monolayer on a dielectric layer with a silicon grating substrate.
    Chen L; Zhang T; Li X; Wang G
    Opt Express; 2013 Nov; 21(23):28628-37. PubMed ID: 24514374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Intercross cascaded dual-layer resonant sub-wavelength gratings].
    Chen YL; Zhao DZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Apr; 29(4):1147-50. PubMed ID: 19626922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon-emitter interaction using integrated ring grating-nanoantenna structures.
    Rahbany N; Geng W; Bachelot R; Couteau C
    Nanotechnology; 2017 May; 28(18):185201. PubMed ID: 28323251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of light emission from silicon by precisely tuning coupled localized surface plasmon resonance of a nanostructured platinum layer prepared by atomic layer deposition.
    Ko CT; Han YY; Wang WC; Shieh J; Chen MJ
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4179-85. PubMed ID: 24564803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wide-angle transmissive filter based on a guided-mode resonant grating.
    Ye Y; Shao R; Zhou Y; Chen L
    Appl Opt; 2012 Aug; 51(24):5785-90. PubMed ID: 22907004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Plasmon Polariton Cross-Coupling Enhanced Forward Emission from Insulator-Metal-Capped ZnO Films.
    Lei DY; Zhang L; Ong HC
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23496-500. PubMed ID: 26418461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic band gap structures for surface-enhanced Raman scattering.
    Kocabas A; Ertas G; Senlik SS; Aydinli A
    Opt Express; 2008 Aug; 16(17):12469-77. PubMed ID: 18711483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature tunability of surface plasmon enhanced Smith-Purcell terahertz radiation for semiconductor-based grating.
    Cheng BH; Ye YS; Lan YC; Tsai DP
    Sci Rep; 2017 Jul; 7(1):6443. PubMed ID: 28743944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-based active slow surface plasmon polaritons.
    Lu H; Zeng C; Zhang Q; Liu X; Hossain MM; Reineck P; Gu M
    Sci Rep; 2015 Feb; 5():8443. PubMed ID: 25676462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of the photoluminescence anisotropy of semiconductor nanowires by coupling to surface plasmon polaritons.
    Muskens OL; Treffers J; Forcales M; Borgström MT; Bakkers EP; Rivas JG
    Opt Lett; 2007 Aug; 32(15):2097-9. PubMed ID: 17671548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of near-grazing microwave photons to surface plasmon polaritons via a dielectric grating.
    Hibbins AP; Sambles JR; Lawrence CR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5B):5900-6. PubMed ID: 11031651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.