These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19547543)

  • 1. Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides.
    Hu J; Tarasov V; Carlie N; Feng NN; Petit L; Agarwal A; Richardson K; Kimerling L
    Opt Express; 2007 Sep; 15(19):11798-807. PubMed ID: 19547543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction.
    Lee KK; Lim DR; Kimerling LC; Shin J; Cerrina F
    Opt Lett; 2001 Dec; 26(23):1888-90. PubMed ID: 18059727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor.
    Hu J; Tarasov V; Agarwal A; Kimerling L; Carlie N; Petit L; Richardson K
    Opt Express; 2007 Mar; 15(5):2307-14. PubMed ID: 19532465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-loss high-index-contrast planar waveguides with graded-index cladding layers.
    Hu J; Feng NN; Carlie N; Petit L; Wang J; Agarwal A; Richardson K; Kimerling L
    Opt Express; 2007 Oct; 15(22):14566-72. PubMed ID: 19550736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of the pedestal process for reducing sidewall scattering in photonic waveguides.
    Melo EG; Alayo MI; Carvalho DO
    Opt Express; 2017 May; 25(9):9755-9760. PubMed ID: 28468355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-loss photonic device in Ge-Sb-S chalcogenide glass.
    Du Q; Huang Y; Li J; Kita D; Michon J; Lin H; Li L; Novak S; Richardson K; Zhang W; Hu J
    Opt Lett; 2016 Jul; 41(13):3090-3. PubMed ID: 27367109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-mode low-loss chalcogenide glass waveguides for the mid-infrared.
    Hô N; Phillips MC; Qiao H; Allen PJ; Krishnaswami K; Riley BJ; Myers TL; Anheier NC
    Opt Lett; 2006 Jun; 31(12):1860-2. PubMed ID: 16729095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability.
    Zhu S; Lo GQ; Kwong DL
    Opt Express; 2010 Nov; 18(24):25283-91. PubMed ID: 21164876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow.
    Hu J; Feng NN; Carlie N; Petit L; Agarwal A; Richardson K; Kimerling L
    Opt Express; 2010 Jan; 18(2):1469-78. PubMed ID: 20173975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography.
    Han T; Madden S; Bulla D; Luther-Davies B
    Opt Express; 2010 Aug; 18(18):19286-91. PubMed ID: 20940824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides.
    Tsay C; Mujagić E; Madsen CK; Gmachl CF; Arnold CB
    Opt Express; 2010 Jul; 18(15):15523-30. PubMed ID: 20720932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and fabrication of As
    Fan Z; Yan K; Zhang L; Qin J; Chen J; Wang R; Shen X
    Appl Opt; 2020 Feb; 59(6):1564-1568. PubMed ID: 32225660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method.
    Takigawa R; Higurashi E; Kawanishi T; Asano T
    Opt Express; 2014 Nov; 22(22):27733-8. PubMed ID: 25401917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low propagation loss AlGaAs waveguides fabricated with plasma-assisted photoresist reflow.
    Porkolab GA; Apiratikul P; Wang B; Guo SH; Richardson CJ
    Opt Express; 2014 Apr; 22(7):7733-43. PubMed ID: 24718149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of high quality GeSbSe reflowed and etched ring resonators.
    Grayson M; Xu B; Shanavas T; Zohrabi M; Bae K; Gopinath JT; Park W
    Opt Express; 2022 Aug; 30(17):31107-31121. PubMed ID: 36242200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small core rib waveguides with embedded gratings in As2Se3 glass.
    Ponnampalam N; Decorby R; Nguyen H; Dwivedi P; Haugen C; McMullin J; Kasap S
    Opt Express; 2004 Dec; 12(25):6270-7. PubMed ID: 19488273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Etchless chalcogenide microresonators monolithically coupled to silicon photonic waveguides.
    Jean P; Douaud A; Michaud-Belleau V; Messaddeq SH; Genest J; LaRochelle S; Messaddeq Y; Shi W
    Opt Lett; 2020 May; 45(10):2830-2833. PubMed ID: 32412479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation on roughness-induced scattering loss of small-core polymer waveguides for single-mode optical interconnect applications.
    Shi Y; Ma L; Zhuang Y; He Z
    Opt Express; 2020 Dec; 28(26):38733-38744. PubMed ID: 33379436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast laser fabrication of low-loss waveguides in chalcogenide glass with 0.65 dB/cm loss.
    McMillen B; Zhang B; Chen KP; Benayas A; Jaque D
    Opt Lett; 2012 May; 37(9):1418-20. PubMed ID: 22555690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Losses in single-mode silicon-on-insulator strip waveguides and bends.
    Vlasov Y; McNab S
    Opt Express; 2004 Apr; 12(8):1622-31. PubMed ID: 19474988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.