These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19547967)

  • 21. Cadmium toxicity and bioaccumulation in freshwater biofilms.
    Morin S; Duong TT; Herlory O; Feurtet-Mazel A; Coste M
    Arch Environ Contam Toxicol; 2008 Feb; 54(2):173-86. PubMed ID: 17763883
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unsteady state flow and stagnation in distribution systems affect the biological stability of drinking water.
    Manuel CM; Nunes OC; Melo LF
    Biofouling; 2010; 26(2):129-39. PubMed ID: 19859848
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biological filtration for removal of arsenic from drinking water.
    Pokhrel D; Viraraghavan T
    J Environ Manage; 2009 Apr; 90(5):1956-61. PubMed ID: 19231065
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of indigenous microorganisms in the biodegradation of naturally occurring petroleum, the reduction of iron, and the mobilization of arsenite from west bengal aquifer sediments.
    Rowland HA; Boothman C; Pancost R; Gault AG; Polya DA; Lloyd JR
    J Environ Qual; 2009; 38(4):1598-607. PubMed ID: 19549936
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal of arsenic from water: effects of competing anions on As(III) removal in KMnO4-Fe(II) process.
    Guan X; Dong H; Ma J; Jiang L
    Water Res; 2009 Aug; 43(15):3891-9. PubMed ID: 19573891
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Resistance of the petroleum-oxidizing microorganism Dietzia sp. to hyperosmotic shock in reconstituted biofilms].
    Plakunov VK; Zhurina MV; Beliaev SS
    Mikrobiologiia; 2008; 77(5):581-9. PubMed ID: 19004337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Colonization of surfaces by phenolic compounds utilizing microorganisms.
    Masák J; Cejková A; Jirků V; Kotrba D; Hron P; Siglová M
    Environ Int; 2005 Feb; 31(2):197-200. PubMed ID: 15661283
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-species microbial biofilm screening for industrial applications.
    Li XZ; Hauer B; Rosche B
    Appl Microbiol Biotechnol; 2007 Oct; 76(6):1255-62. PubMed ID: 17653709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of arsenite-oxidizing bacteria to decipher their role in arsenic bioremediation.
    Biswas R; Sarkar A
    Prep Biochem Biotechnol; 2019; 49(1):30-37. PubMed ID: 29889593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioremediation of crystal violet using air bubble bioreactor packed with Pseudomonas aeruginosa.
    Manal MA; El-Naggar S; El-Aasar A; Barakat Khlood I
    Water Res; 2005 Dec; 39(20):5045-54. PubMed ID: 16316674
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microplate screening assay for the detection of arsenite-oxidizing and arsenate-reducing bacteria.
    Simeonova DD; Lièvremont D; Lagarde F; Muller DA; Groudeva VI; Lett MC
    FEMS Microbiol Lett; 2004 Aug; 237(2):249-53. PubMed ID: 15321669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biological As(III) oxidation in biofilters by using native groundwater microorganisms.
    Crognale S; Casentini B; Amalfitano S; Fazi S; Petruccioli M; Rossetti S
    Sci Total Environ; 2019 Feb; 651(Pt 1):93-102. PubMed ID: 30227294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation and evaluation of iron-chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater.
    Gupta A; Chauhan VS; Sankararamakrishnan N
    Water Res; 2009 Aug; 43(15):3862-70. PubMed ID: 19577786
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacterial community succession during the enrichment of chemolithoautotrophic arsenite oxidizing bacteria at high arsenic concentrations.
    Le Nguyen A; Sato A; Inoue D; Sei K; Soda S; Ike M
    J Environ Sci (China); 2012; 24(12):2133-40. PubMed ID: 23534210
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomineralisation of manganese on titanium surfaces exposed to seawater.
    Gopal J; Muraleedharan P; Sarvamangala H; George RP; Dayal RK; Tata BV; Khatak HS; Natarajan KA
    Biofouling; 2008; 24(4):275-82. PubMed ID: 18568665
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conditioning film and initial biofilm formation on ceramics tiles in the marine environment.
    Siboni N; Lidor M; Kramarsky-Winter E; Kushmaro A
    FEMS Microbiol Lett; 2007 Sep; 274(1):24-9. PubMed ID: 17578524
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of analytical methods for determining the distribution of biofilm and active bacteria in a commercial heating system.
    Kjellerup BV; Gudmonsson G; Sowers K; Nielsen PH
    Biofouling; 2006; 22(3-4):145-51. PubMed ID: 17290859
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Factors affecting bulk to total bacteria ratio in drinking water distribution systems.
    Srinivasan S; Harrington GW; Xagoraraki I; Goel R
    Water Res; 2008 Jul; 42(13):3393-404. PubMed ID: 18541283
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of loading rate and oxygen supply on nitrification in a non-porous membrane biofilm reactor.
    Hwang JH; Cicek N; Oleszkiewicz J
    Water Res; 2009 Jul; 43(13):3301-7. PubMed ID: 19473684
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California.
    Kulp TR; Hoeft SE; Asao M; Madigan MT; Hollibaugh JT; Fisher JC; Stolz JF; Culbertson CW; Miller LG; Oremland RS
    Science; 2008 Aug; 321(5891):967-70. PubMed ID: 18703741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.