BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 19548350)

  • 1. Effect of intestinal glucuronidation in limiting hepatic exposure and bioactivation of raloxifene in humans and rats.
    Dalvie D; Kang P; Zientek M; Xiang C; Zhou S; Obach RS
    Chem Res Toxicol; 2008 Dec; 21(12):2260-71. PubMed ID: 19548350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intestinal glucuronidation metabolism may have a greater impact on oral bioavailability than hepatic glucuronidation metabolism in humans: a study with raloxifene, substrate for UGT1A1, 1A8, 1A9, and 1A10.
    Mizuma T
    Int J Pharm; 2009 Aug; 378(1-2):140-1. PubMed ID: 19486934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of human drug clearance by multiple metabolic pathways: integration of hepatic and intestinal microsomal and cytosolic data.
    Cubitt HE; Houston JB; Galetin A
    Drug Metab Dispos; 2011 May; 39(5):864-73. PubMed ID: 21303923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raloxifene glucuronidation in liver and intestinal microsomes of humans and monkeys: contribution of UGT1A1, UGT1A8 and UGT1A9.
    Kishi N; Takasuka A; Kokawa Y; Isobe T; Taguchi M; Shigeyama M; Murata M; Suno M; Hanioka N
    Xenobiotica; 2016; 46(4):289-95. PubMed ID: 26247833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences between human and rat intestinal and hepatic bisphenol A glucuronidation and the influence of alamethicin on in vitro kinetic measurements.
    Mazur CS; Kenneke JF; Hess-Wilson JK; Lipscomb JC
    Drug Metab Dispos; 2010 Dec; 38(12):2232-8. PubMed ID: 20736320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of raloxifene glucuronidation in vitro: contribution of intestinal metabolism to presystemic clearance.
    Kemp DC; Fan PW; Stevens JC
    Drug Metab Dispos; 2002 Jun; 30(6):694-700. PubMed ID: 12019197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of pH in the glucuronidation of raloxifene, mycophenolic acid and ezetimibe.
    Chang JH; Yoo P; Lee T; Klopf W; Takao D
    Mol Pharm; 2009; 6(4):1216-27. PubMed ID: 19449843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NADPH-dependent covalent binding of [3H]paroxetine to human liver microsomes and S-9 fractions: identification of an electrophilic quinone metabolite of paroxetine.
    Zhao SX; Dalvie DK; Kelly JM; Soglia JR; Frederick KS; Smith EB; Obach RS; Kalgutkar AS
    Chem Res Toxicol; 2007 Nov; 20(11):1649-57. PubMed ID: 17907785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raloxifene glucuronidation in human intestine, kidney, and liver microsomes and in human liver microsomes genotyped for the UGT1A1*28 polymorphism.
    Trdan Lusin T; Trontelj J; Mrhar A
    Drug Metab Dispos; 2011 Dec; 39(12):2347-54. PubMed ID: 21937736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detoxication versus Bioactivation Pathways of Lapatinib In Vitro: UGT1A1 Catalyzes the Hepatic Glucuronidation of Debenzylated Lapatinib.
    Nardone-White DT; Bissada JE; Abouda AA; Jackson KD
    Drug Metab Dispos; 2021 Mar; 49(3):233-244. PubMed ID: 33376146
    [No Abstract]   [Full Text] [Related]  

  • 11. Extensive intestinal glucuronidation of raloxifene in vivo in pigs and impact for oral drug delivery.
    Thörn HA; Yasin M; Dickinson PA; Lennernäs H
    Xenobiotica; 2012 Sep; 42(9):917-28. PubMed ID: 22559211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatic and intestinal glucuronidation of mono(2-ethylhexyl) phthalate, an active metabolite of di(2-ethylhexyl) phthalate, in humans, dogs, rats, and mice: an in vitro analysis using microsomal fractions.
    Hanioka N; Isobe T; Kinashi Y; Tanaka-Kagawa T; Jinno H
    Arch Toxicol; 2016 Jul; 90(7):1651-7. PubMed ID: 26514348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Species- and disposition model-dependent metabolism of raloxifene in gut and liver: role of UGT1A10.
    Jeong EJ; Liu Y; Lin H; Hu M
    Drug Metab Dispos; 2005 Jun; 33(6):785-94. PubMed ID: 15769887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of hepatic metabolism in the bioactivation and detoxication of amodiaquine.
    Jewell H; Maggs JL; Harrison AC; O'Neill PM; Ruscoe JE; Park BK
    Xenobiotica; 1995 Feb; 25(2):199-217. PubMed ID: 7618347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of intestinal glucuronidation on the pharmacokinetics of raloxifene.
    Kosaka K; Sakai N; Endo Y; Fukuhara Y; Tsuda-Tsukimoto M; Ohtsuka T; Kino I; Tanimoto T; Takeba N; Takahashi M; Kume T
    Drug Metab Dispos; 2011 Sep; 39(9):1495-502. PubMed ID: 21646435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for the bioactivation of zomepirac and tolmetin by an oxidative pathway: identification of glutathione adducts in vitro in human liver microsomes and in vivo in rats.
    Chen Q; Doss GA; Tung EC; Liu W; Tang YS; Braun MP; Didolkar V; Strauss JR; Wang RW; Stearns RA; Evans DC; Baillie TA; Tang W
    Drug Metab Dispos; 2006 Jan; 34(1):145-51. PubMed ID: 16251255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of the nephrotoxicant N-(3,5-dichlorophenyl)succinimide in rats: evidence for bioactivation through alcohol-O-glucuronidation and O-sulfation.
    Cui D; Rankin GO; Harvison PJ
    Chem Res Toxicol; 2005 Jun; 18(6):991-1003. PubMed ID: 15962934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in cytochrome P450-mediated biotransformation of 1,2-dichlorobenzene by rat and man: implications for human risk assessment.
    Hissink AM; Oudshoorn MJ; Van Ommen B; Haenen GR; Van Bladeren PJ
    Chem Res Toxicol; 1996 Dec; 9(8):1249-56. PubMed ID: 8951226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of hyperthyroidism on the in vitro metabolism and covalent binding of 1,1-dichloroethylene in rat liver microsomes.
    Gunasena GH; Kanz MF
    J Toxicol Environ Health; 1997 Oct; 52(2):169-88. PubMed ID: 9310148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucuronidation of curcuminoids by human microsomal and recombinant UDP-glucuronosyltransferases.
    Hoehle SI; Pfeiffer E; Metzler M
    Mol Nutr Food Res; 2007 Aug; 51(8):932-8. PubMed ID: 17628876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.