These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 19548350)
1. Effect of intestinal glucuronidation in limiting hepatic exposure and bioactivation of raloxifene in humans and rats. Dalvie D; Kang P; Zientek M; Xiang C; Zhou S; Obach RS Chem Res Toxicol; 2008 Dec; 21(12):2260-71. PubMed ID: 19548350 [TBL] [Abstract][Full Text] [Related]
2. Intestinal glucuronidation metabolism may have a greater impact on oral bioavailability than hepatic glucuronidation metabolism in humans: a study with raloxifene, substrate for UGT1A1, 1A8, 1A9, and 1A10. Mizuma T Int J Pharm; 2009 Aug; 378(1-2):140-1. PubMed ID: 19486934 [TBL] [Abstract][Full Text] [Related]
3. Prediction of human drug clearance by multiple metabolic pathways: integration of hepatic and intestinal microsomal and cytosolic data. Cubitt HE; Houston JB; Galetin A Drug Metab Dispos; 2011 May; 39(5):864-73. PubMed ID: 21303923 [TBL] [Abstract][Full Text] [Related]
4. Raloxifene glucuronidation in liver and intestinal microsomes of humans and monkeys: contribution of UGT1A1, UGT1A8 and UGT1A9. Kishi N; Takasuka A; Kokawa Y; Isobe T; Taguchi M; Shigeyama M; Murata M; Suno M; Hanioka N Xenobiotica; 2016; 46(4):289-95. PubMed ID: 26247833 [TBL] [Abstract][Full Text] [Related]
5. Differences between human and rat intestinal and hepatic bisphenol A glucuronidation and the influence of alamethicin on in vitro kinetic measurements. Mazur CS; Kenneke JF; Hess-Wilson JK; Lipscomb JC Drug Metab Dispos; 2010 Dec; 38(12):2232-8. PubMed ID: 20736320 [TBL] [Abstract][Full Text] [Related]
6. Characterization of raloxifene glucuronidation in vitro: contribution of intestinal metabolism to presystemic clearance. Kemp DC; Fan PW; Stevens JC Drug Metab Dispos; 2002 Jun; 30(6):694-700. PubMed ID: 12019197 [TBL] [Abstract][Full Text] [Related]
7. The role of pH in the glucuronidation of raloxifene, mycophenolic acid and ezetimibe. Chang JH; Yoo P; Lee T; Klopf W; Takao D Mol Pharm; 2009; 6(4):1216-27. PubMed ID: 19449843 [TBL] [Abstract][Full Text] [Related]
8. NADPH-dependent covalent binding of [3H]paroxetine to human liver microsomes and S-9 fractions: identification of an electrophilic quinone metabolite of paroxetine. Zhao SX; Dalvie DK; Kelly JM; Soglia JR; Frederick KS; Smith EB; Obach RS; Kalgutkar AS Chem Res Toxicol; 2007 Nov; 20(11):1649-57. PubMed ID: 17907785 [TBL] [Abstract][Full Text] [Related]
9. Raloxifene glucuronidation in human intestine, kidney, and liver microsomes and in human liver microsomes genotyped for the UGT1A1*28 polymorphism. Trdan Lusin T; Trontelj J; Mrhar A Drug Metab Dispos; 2011 Dec; 39(12):2347-54. PubMed ID: 21937736 [TBL] [Abstract][Full Text] [Related]
10. Detoxication versus Bioactivation Pathways of Lapatinib In Vitro: UGT1A1 Catalyzes the Hepatic Glucuronidation of Debenzylated Lapatinib. Nardone-White DT; Bissada JE; Abouda AA; Jackson KD Drug Metab Dispos; 2021 Mar; 49(3):233-244. PubMed ID: 33376146 [No Abstract] [Full Text] [Related]
11. Extensive intestinal glucuronidation of raloxifene in vivo in pigs and impact for oral drug delivery. Thörn HA; Yasin M; Dickinson PA; Lennernäs H Xenobiotica; 2012 Sep; 42(9):917-28. PubMed ID: 22559211 [TBL] [Abstract][Full Text] [Related]
12. Hepatic and intestinal glucuronidation of mono(2-ethylhexyl) phthalate, an active metabolite of di(2-ethylhexyl) phthalate, in humans, dogs, rats, and mice: an in vitro analysis using microsomal fractions. Hanioka N; Isobe T; Kinashi Y; Tanaka-Kagawa T; Jinno H Arch Toxicol; 2016 Jul; 90(7):1651-7. PubMed ID: 26514348 [TBL] [Abstract][Full Text] [Related]
13. Species- and disposition model-dependent metabolism of raloxifene in gut and liver: role of UGT1A10. Jeong EJ; Liu Y; Lin H; Hu M Drug Metab Dispos; 2005 Jun; 33(6):785-94. PubMed ID: 15769887 [TBL] [Abstract][Full Text] [Related]
14. Role of hepatic metabolism in the bioactivation and detoxication of amodiaquine. Jewell H; Maggs JL; Harrison AC; O'Neill PM; Ruscoe JE; Park BK Xenobiotica; 1995 Feb; 25(2):199-217. PubMed ID: 7618347 [TBL] [Abstract][Full Text] [Related]
15. Impact of intestinal glucuronidation on the pharmacokinetics of raloxifene. Kosaka K; Sakai N; Endo Y; Fukuhara Y; Tsuda-Tsukimoto M; Ohtsuka T; Kino I; Tanimoto T; Takeba N; Takahashi M; Kume T Drug Metab Dispos; 2011 Sep; 39(9):1495-502. PubMed ID: 21646435 [TBL] [Abstract][Full Text] [Related]
16. Evidence for the bioactivation of zomepirac and tolmetin by an oxidative pathway: identification of glutathione adducts in vitro in human liver microsomes and in vivo in rats. Chen Q; Doss GA; Tung EC; Liu W; Tang YS; Braun MP; Didolkar V; Strauss JR; Wang RW; Stearns RA; Evans DC; Baillie TA; Tang W Drug Metab Dispos; 2006 Jan; 34(1):145-51. PubMed ID: 16251255 [TBL] [Abstract][Full Text] [Related]
17. Metabolism of the nephrotoxicant N-(3,5-dichlorophenyl)succinimide in rats: evidence for bioactivation through alcohol-O-glucuronidation and O-sulfation. Cui D; Rankin GO; Harvison PJ Chem Res Toxicol; 2005 Jun; 18(6):991-1003. PubMed ID: 15962934 [TBL] [Abstract][Full Text] [Related]
18. Differences in cytochrome P450-mediated biotransformation of 1,2-dichlorobenzene by rat and man: implications for human risk assessment. Hissink AM; Oudshoorn MJ; Van Ommen B; Haenen GR; Van Bladeren PJ Chem Res Toxicol; 1996 Dec; 9(8):1249-56. PubMed ID: 8951226 [TBL] [Abstract][Full Text] [Related]
19. Effect of hyperthyroidism on the in vitro metabolism and covalent binding of 1,1-dichloroethylene in rat liver microsomes. Gunasena GH; Kanz MF J Toxicol Environ Health; 1997 Oct; 52(2):169-88. PubMed ID: 9310148 [TBL] [Abstract][Full Text] [Related]
20. Glucuronidation of curcuminoids by human microsomal and recombinant UDP-glucuronosyltransferases. Hoehle SI; Pfeiffer E; Metzler M Mol Nutr Food Res; 2007 Aug; 51(8):932-8. PubMed ID: 17628876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]