These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 19548356)
1. Role of catechin quinones in the induction of EpRE-mediated gene expression. Muzolf-Panek M; Gliszczyńska-Swigło A; de Haan L; Aarts JM; Szymusiak H; Vervoort JM; Tyrakowska B; Rietjens IM Chem Res Toxicol; 2008 Dec; 21(12):2352-60. PubMed ID: 19548356 [TBL] [Abstract][Full Text] [Related]
2. Newly constructed stable reporter cell lines for mechanistic studies on electrophile-responsive element-mediated gene expression reveal a role for flavonoid planarity. Boerboom AM; Vermeulen M; van der Woude H; Bremer BI; Lee-Hilz YY; Kampman E; van Bladeren PJ; Rietjens IM; Aarts JM Biochem Pharmacol; 2006 Jul; 72(2):217-26. PubMed ID: 16756964 [TBL] [Abstract][Full Text] [Related]
4. Shifted concentration dependency of EpRE- and XRE-mediated gene expression points at monofunctional EpRE-mediated induction by flavonoids at physiologically relevant concentrations. Lee-Hilz YY; ter Borg S; van Berkel WJ; Rietjens IM; Aarts JM Toxicol In Vitro; 2008 Jun; 22(4):921-6. PubMed ID: 18314304 [TBL] [Abstract][Full Text] [Related]
5. Activation of antioxidant/electrophile-responsive elements in IMR-32 human neuroblastoma cells. Moehlenkamp JD; Johnson JA Arch Biochem Biophys; 1999 Mar; 363(1):98-106. PubMed ID: 10049503 [TBL] [Abstract][Full Text] [Related]
6. Potency of isothiocyanates to induce luciferase reporter gene expression via the electrophile-responsive element from murine glutathione S-transferase Ya. Vermeulen M; Boerboom AM; Blankvoort BM; Aarts JM; Rietjens IM; van Bladeren PJ; Vaes WH Toxicol In Vitro; 2009 Jun; 23(4):617-21. PubMed ID: 19232536 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: structure-activity relationship and mechanisms involved. Chung JY; Huang C; Meng X; Dong Z; Yang CS Cancer Res; 1999 Sep; 59(18):4610-7. PubMed ID: 10493515 [TBL] [Abstract][Full Text] [Related]
8. The role of epoxidation and electrophile-responsive element-regulated gene transcription in the potentially beneficial and harmful effects of the coffee components cafestol and kahweol. van Cruchten ST; de Haan LH; Mulder PP; Kunne C; Boekschoten MV; Katan MB; Aarts JM; Witkamp RF J Nutr Biochem; 2010 Aug; 21(8):757-63. PubMed ID: 19616929 [TBL] [Abstract][Full Text] [Related]
9. Synergistic effects of multiple treatments, and both DNA and RNA direct bindings on, green tea catechins. Kuzuhara T; Tanabe A; Sei Y; Yamaguchi K; Suganuma M; Fujiki H Mol Carcinog; 2007 Aug; 46(8):640-5. PubMed ID: 17440927 [TBL] [Abstract][Full Text] [Related]
10. Effects of tea catechins, epigallocatechin, gallocatechin, and gallocatechin gallate, on bone metabolism. Ko CH; Lau KM; Choy WY; Leung PC J Agric Food Chem; 2009 Aug; 57(16):7293-7. PubMed ID: 19653629 [TBL] [Abstract][Full Text] [Related]
11. Activation of EpRE-mediated gene transcription by quercetin glucuronides depends on their deconjugation. Lee-Hilz YY; Stolaki M; van Berkel WJ; Aarts JM; Rietjens IM Food Chem Toxicol; 2008 Jun; 46(6):2128-34. PubMed ID: 18375031 [TBL] [Abstract][Full Text] [Related]
12. Generation of hydrogen peroxide primarily contributes to the induction of Fe(II)-dependent apoptosis in Jurkat cells by (-)-epigallocatechin gallate. Nakagawa H; Hasumi K; Woo JT; Nagai K; Wachi M Carcinogenesis; 2004 Sep; 25(9):1567-74. PubMed ID: 15090467 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of P-glycoprotein function by tea catechins in KB-C2 cells. Kitagawa S; Nabekura T; Kamiyama S J Pharm Pharmacol; 2004 Aug; 56(8):1001-5. PubMed ID: 15285844 [TBL] [Abstract][Full Text] [Related]
15. Coordinate regulation of NAD(P)H:quinone oxidoreductase and glutathione-S-transferases in primary cultures of rat neurons and glia: role of the antioxidant/electrophile responsive element. Ahlgren-Beckendorf JA; Reising AM; Schander MA; Herdler JW; Johnson JA Glia; 1999 Jan; 25(2):131-42. PubMed ID: 9890628 [TBL] [Abstract][Full Text] [Related]
16. Influence of gallate and pyrogallol moieties on the intestinal absorption of (-)-epicatechin and (-)-epicatechin gallate. Tagashira T; Choshi T; Hibino S; Kamishikiryou J; Sugihara N J Food Sci; 2012 Oct; 77(10):H208-15. PubMed ID: 22938538 [TBL] [Abstract][Full Text] [Related]
17. Green tea constituents (-)-epigallocatechin-3-gallate (EGCG) and gallic acid induce topoisomerase I- and topoisomerase II-DNA complexes in cells mediated by pyrogallol-induced hydrogen peroxide. López-Lázaro M; Calderón-Montaño JM; Burgos-Morón E; Austin CA Mutagenesis; 2011 Jul; 26(4):489-98. PubMed ID: 21382914 [TBL] [Abstract][Full Text] [Related]
18. Identification of potential aryl hydrocarbon receptor antagonists in green tea. Palermo CM; Hernando JI; Dertinger SD; Kende AS; Gasiewicz TA Chem Res Toxicol; 2003 Jul; 16(7):865-72. PubMed ID: 12870889 [TBL] [Abstract][Full Text] [Related]
19. Identification of epigallocatechin-3-gallate in green tea polyphenols as a potent inducer of p53-dependent apoptosis in the human lung cancer cell line A549. Yamauchi R; Sasaki K; Yoshida K Toxicol In Vitro; 2009 Aug; 23(5):834-9. PubMed ID: 19406223 [TBL] [Abstract][Full Text] [Related]
20. The impact of the 67kDa laminin receptor on both cell-surface binding and anti-allergic action of tea catechins. Fujimura Y; Umeda D; Yamada K; Tachibana H Arch Biochem Biophys; 2008 Aug; 476(2):133-8. PubMed ID: 18358230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]