BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 19548356)

  • 1. Role of catechin quinones in the induction of EpRE-mediated gene expression.
    Muzolf-Panek M; Gliszczyńska-Swigło A; de Haan L; Aarts JM; Szymusiak H; Vervoort JM; Tyrakowska B; Rietjens IM
    Chem Res Toxicol; 2008 Dec; 21(12):2352-60. PubMed ID: 19548356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Newly constructed stable reporter cell lines for mechanistic studies on electrophile-responsive element-mediated gene expression reveal a role for flavonoid planarity.
    Boerboom AM; Vermeulen M; van der Woude H; Bremer BI; Lee-Hilz YY; Kampman E; van Bladeren PJ; Rietjens IM; Aarts JM
    Biochem Pharmacol; 2006 Jul; 72(2):217-26. PubMed ID: 16756964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pro-oxidant activity of flavonoids induces EpRE-mediated gene expression.
    Lee-Hilz YY; Boerboom AM; Westphal AH; Berkel WJ; Aarts JM; Rietjens IM
    Chem Res Toxicol; 2006 Nov; 19(11):1499-505. PubMed ID: 17112238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shifted concentration dependency of EpRE- and XRE-mediated gene expression points at monofunctional EpRE-mediated induction by flavonoids at physiologically relevant concentrations.
    Lee-Hilz YY; ter Borg S; van Berkel WJ; Rietjens IM; Aarts JM
    Toxicol In Vitro; 2008 Jun; 22(4):921-6. PubMed ID: 18314304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of antioxidant/electrophile-responsive elements in IMR-32 human neuroblastoma cells.
    Moehlenkamp JD; Johnson JA
    Arch Biochem Biophys; 1999 Mar; 363(1):98-106. PubMed ID: 10049503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potency of isothiocyanates to induce luciferase reporter gene expression via the electrophile-responsive element from murine glutathione S-transferase Ya.
    Vermeulen M; Boerboom AM; Blankvoort BM; Aarts JM; Rietjens IM; van Bladeren PJ; Vaes WH
    Toxicol In Vitro; 2009 Jun; 23(4):617-21. PubMed ID: 19232536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: structure-activity relationship and mechanisms involved.
    Chung JY; Huang C; Meng X; Dong Z; Yang CS
    Cancer Res; 1999 Sep; 59(18):4610-7. PubMed ID: 10493515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of epoxidation and electrophile-responsive element-regulated gene transcription in the potentially beneficial and harmful effects of the coffee components cafestol and kahweol.
    van Cruchten ST; de Haan LH; Mulder PP; Kunne C; Boekschoten MV; Katan MB; Aarts JM; Witkamp RF
    J Nutr Biochem; 2010 Aug; 21(8):757-63. PubMed ID: 19616929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic effects of multiple treatments, and both DNA and RNA direct bindings on, green tea catechins.
    Kuzuhara T; Tanabe A; Sei Y; Yamaguchi K; Suganuma M; Fujiki H
    Mol Carcinog; 2007 Aug; 46(8):640-5. PubMed ID: 17440927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of tea catechins, epigallocatechin, gallocatechin, and gallocatechin gallate, on bone metabolism.
    Ko CH; Lau KM; Choy WY; Leung PC
    J Agric Food Chem; 2009 Aug; 57(16):7293-7. PubMed ID: 19653629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of EpRE-mediated gene transcription by quercetin glucuronides depends on their deconjugation.
    Lee-Hilz YY; Stolaki M; van Berkel WJ; Aarts JM; Rietjens IM
    Food Chem Toxicol; 2008 Jun; 46(6):2128-34. PubMed ID: 18375031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of hydrogen peroxide primarily contributes to the induction of Fe(II)-dependent apoptosis in Jurkat cells by (-)-epigallocatechin gallate.
    Nakagawa H; Hasumi K; Woo JT; Nagai K; Wachi M
    Carcinogenesis; 2004 Sep; 25(9):1567-74. PubMed ID: 15090467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. c-Maf negatively regulates ARE-mediated detoxifying enzyme genes expression and anti-oxidant induction.
    Dhakshinamoorthy S; Jaiswal AK
    Oncogene; 2002 Aug; 21(34):5301-12. PubMed ID: 12149651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of P-glycoprotein function by tea catechins in KB-C2 cells.
    Kitagawa S; Nabekura T; Kamiyama S
    J Pharm Pharmacol; 2004 Aug; 56(8):1001-5. PubMed ID: 15285844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordinate regulation of NAD(P)H:quinone oxidoreductase and glutathione-S-transferases in primary cultures of rat neurons and glia: role of the antioxidant/electrophile responsive element.
    Ahlgren-Beckendorf JA; Reising AM; Schander MA; Herdler JW; Johnson JA
    Glia; 1999 Jan; 25(2):131-42. PubMed ID: 9890628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of gallate and pyrogallol moieties on the intestinal absorption of (-)-epicatechin and (-)-epicatechin gallate.
    Tagashira T; Choshi T; Hibino S; Kamishikiryou J; Sugihara N
    J Food Sci; 2012 Oct; 77(10):H208-15. PubMed ID: 22938538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green tea constituents (-)-epigallocatechin-3-gallate (EGCG) and gallic acid induce topoisomerase I- and topoisomerase II-DNA complexes in cells mediated by pyrogallol-induced hydrogen peroxide.
    López-Lázaro M; Calderón-Montaño JM; Burgos-Morón E; Austin CA
    Mutagenesis; 2011 Jul; 26(4):489-98. PubMed ID: 21382914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of potential aryl hydrocarbon receptor antagonists in green tea.
    Palermo CM; Hernando JI; Dertinger SD; Kende AS; Gasiewicz TA
    Chem Res Toxicol; 2003 Jul; 16(7):865-72. PubMed ID: 12870889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of epigallocatechin-3-gallate in green tea polyphenols as a potent inducer of p53-dependent apoptosis in the human lung cancer cell line A549.
    Yamauchi R; Sasaki K; Yoshida K
    Toxicol In Vitro; 2009 Aug; 23(5):834-9. PubMed ID: 19406223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of the 67kDa laminin receptor on both cell-surface binding and anti-allergic action of tea catechins.
    Fujimura Y; Umeda D; Yamada K; Tachibana H
    Arch Biochem Biophys; 2008 Aug; 476(2):133-8. PubMed ID: 18358230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.