These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 19548533)

  • 1. [Search for an optimal orientational ordering of Qy transition dipoles of subantennae molecules in superantenna of photosynthetic green bacteria. Model calculations].
    Zobova AV; Iakovlev AG; Taisova AS; Fetisova ZG
    Mol Biol (Mosk); 2009; 43(3):464-82. PubMed ID: 19548533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal spectral coordination of subantennae in natural antennae as an efficient strategy for light harvesting in photosynthesis.
    Novikov AA; Taisova AS; Fetisova ZG
    J Bioinform Comput Biol; 2006 Aug; 4(4):887-909. PubMed ID: 17007073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Analysis of spectral conjugation of nonuniform subantennae in the light-harvesting superantenna of Oscillochloridaceae photosynthetic green bacteria].
    Novikov AA; Taisova AS; Fetisova ZG
    Biofizika; 2007; 52(1):63-8. PubMed ID: 17348398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Search for an optimal interfacing of subantennae in superantenna of photosynthetic green bacteria from Oscillochloridaceae family: model calculations.
    Zobova AV; Taisova AS; Fetisova ZG
    Dokl Biochem Biophys; 2010; 433():148-51. PubMed ID: 20714844
    [No Abstract]   [Full Text] [Related]  

  • 5. [Survival strategy of photosynthetic organisms. 1. Variability of the extent of light-harvesting pigment aggregation as a structural factor optimizing the function of oligomeric photosynthetic antenna. Model calculations].
    Fetisova ZG
    Mol Biol (Mosk); 2004; 38(3):515-23. PubMed ID: 15285622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental proof of optimality of interfacing of chlorosome BChl c and membrane BChl a subantennae in superantenna of photosynthetic green bacteria from the oscillochloridaceae family.
    Taisova AS; Lukashev EP; Fedorova NV; Zobova AV; Dolgova TA; Fetisova ZG
    Dokl Biochem Biophys; 2012; 444():154-7. PubMed ID: 22772999
    [No Abstract]   [Full Text] [Related]  

  • 7. Size variability of the unit building block of peripheral light-harvesting antennas as a strategy for effective functioning of antennas of variable size that is controlled in vivo by light intensity.
    Taisova AS; Yakovlev AG; Fetisova ZG
    Biochemistry (Mosc); 2014 Mar; 79(3):251-9. PubMed ID: 24821452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Model of aggregation of pigments in the chlorosomal antenna of the green bacteria Chloroflexus aurantiacus].
    Mauring K; Novoderezhkin VI; Taisova AS; Fetisova ZG
    Mol Biol (Mosk); 2004; 38(2):317-22. PubMed ID: 15125238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Are "giant" chlorosomes part of light-harvesting antennae of the photosynthetic apparatus in green bacteria?].
    Borisov AIu
    Biofizika; 2009; 54(3):434-41. PubMed ID: 19569502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Means of optimizing light energy conversion in the primary stages of photosynthesis. II. Optimization of the structure of an uniform photosynthetic unit lattice].
    Fetisova ZG; Fok MV; Shibaeva LV; Borisov AIu
    Mol Biol (Mosk); 1984; 18(6):1657-63. PubMed ID: 6521742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A study of the content of pigments in the light-harvesting antenna of the green bacterium from the new family Oscillochloridaceae].
    Taisova AS; Keppen OI; Fetisova ZG
    Biofizika; 2004; 49(6):1069-74. PubMed ID: 15612548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significant enhancement in the power-conversion efficiency of chlorophyll co-sensitized solar cells by mimicking the principles of natural photosynthetic light-harvesting complexes.
    Wang XF; Koyama Y; Kitao O; Wada Y; Sasaki SI; Tamiaki H; Zhou H
    Biosens Bioelectron; 2010 Apr; 25(8):1970-6. PubMed ID: 20149628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exciton delocalization in the B808-866 antenna of the green bacterium Chloroflexus aurantiacus as revealed by ultrafast pump-probe spectroscopy.
    Novoderezhkin V; Fetisova Z
    Biophys J; 1999 Jul; 77(1):424-30. PubMed ID: 10388768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the in situ electrochemical oxidation on the pigment-protein arrangement and energy transfer in light-harvesting complex from Rhodobacter sphaeroides 601.
    Liu W; Lu Y; Liu Y; Liu K; Yan Y; Kong J; Xu C; Qian S
    Biochem Biophys Res Commun; 2006 Feb; 340(2):505-11. PubMed ID: 16380087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multichromophoric Förster resonance energy transfer from b800 to b850 in the light harvesting complex 2: evidence for subtle energetic optimization by purple bacteria.
    Jang S; Newton MD; Silbey RJ
    J Phys Chem B; 2007 Jun; 111(24):6807-14. PubMed ID: 17439170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of integral membrane proteins under high hydrostatic pressure: the LH2 and LH3 antenna pigment-protein complexes from photosynthetic bacteria.
    Kangur L; Timpmann K; Freiberg A
    J Phys Chem B; 2008 Jul; 112(26):7948-55. PubMed ID: 18537288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Survival strategy of photosynthetic organisms. 2. Experimental proof of the size variability of the unit building block of light-harvesting oligomeric antenna].
    Iakovlev AG; Taisova AS; Fetisova ZG
    Mol Biol (Mosk); 2004; 38(3):524-31. PubMed ID: 15285623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pigment organization and exciton dynamics in the B808-866 antenna of the green bacterium Chloroflexus aurantiacus.
    Novoderezhkin V; Taisova A; Fetisova Z
    Biochem Mol Biol Int; 1998 Jun; 45(2):355-62. PubMed ID: 9678257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherence and decoherence in biological systems: principles of noise-assisted transport and the origin of long-lived coherences.
    Chin AW; Huelga SF; Plenio MB
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3638-57. PubMed ID: 22753818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherence in the B800 ring of purple bacteria LH2.
    Cheng YC; Silbey RJ
    Phys Rev Lett; 2006 Jan; 96(2):028103. PubMed ID: 16486648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.