These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 19548533)

  • 21. Direct counting of submicrometer-sized photosynthetic apparatus dispersed in medium at cryogenic temperature by confocal laser fluorescence microscopy: estimation of the number of bacteriochlorophyll c in single light-harvesting antenna complexes chlorosomes of green photosynthetic bacteria.
    Saga Y; Shibata Y; Itoh S; Tamiaki H
    J Phys Chem B; 2007 Nov; 111(43):12605-9. PubMed ID: 17918876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pigment organization and energy level structure in light-harvesting complex 4: insights from two-dimensional electronic spectroscopy.
    Read EL; Schlau-Cohen GS; Engel GS; Georgiou T; Papiz MZ; Fleming GR
    J Phys Chem B; 2009 May; 113(18):6495-504. PubMed ID: 19402730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transmission electron microscopic study on supramolecular nanostructures of bacteriochlorophyll self-aggregates in chlorosomes of green photosynthetic bacteria.
    Saga Y; Tamiaki H
    J Biosci Bioeng; 2006 Aug; 102(2):118-23. PubMed ID: 17027873
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comments on the through-space singlet energy transfers and energy migration (exciton) in the light harvesting systems.
    Harvey PD; Stern C; Gros CP; Guilard R
    J Inorg Biochem; 2008 Mar; 102(3):395-405. PubMed ID: 18160130
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Factors of the optimization of the light-harvesting antenna structure of the photosynthetic unit].
    Fetisova ZG; Fok MV; Borisov AIu
    Mol Biol (Mosk); 1983; 17(2):437-45. PubMed ID: 6855767
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure-dependent wavelike energy transfer on pigment rings of individual light-harvesting-2 complexes from photosynthetic bacteria.
    Chu QJ; Weng YX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041917. PubMed ID: 20481763
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Progresses in the study on light harvesting pigment protein complexes and reaction centers from purple bacteria].
    Liu Y; Gao JP; Xu CH
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Dec; 31(6):567-74. PubMed ID: 16361782
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optoelectronic energy transfer at novel biohybrid interfaces using light harvesting complexes from Chloroflexus aurantiacus.
    Sridharan A; Muthuswamy J; Pizziconi VB
    Langmuir; 2009 Jun; 25(11):6508-16. PubMed ID: 19405485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing the effect of the binding site on the electrostatic behavior of a series of carotenoids reconstituted into the light-harvesting 1 complex from purple photosynthetic bacterium Rhodospirillum rubrum detected by stark spectroscopy.
    Nakagawa K; Suzuki S; Fujii R; Gardiner AT; Cogdell RJ; Nango M; Hashimoto H
    J Phys Chem B; 2008 Aug; 112(31):9467-75. PubMed ID: 18613723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atomic force microscopy studies of native photosynthetic membranes.
    Sturgis JN; Tucker JD; Olsen JD; Hunter CN; Niederman RA
    Biochemistry; 2009 May; 48(17):3679-98. PubMed ID: 19265434
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tailoring porphyrins and chlorins for self-assembly in biomimetic artificial antenna systems.
    Balaban TS
    Acc Chem Res; 2005 Aug; 38(8):612-23. PubMed ID: 16104684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of zinc bacteriochlorophyll-d analogues with various 17-substituents and their chlorosomal self-aggregates in non-polar organic solvents.
    Tamiaki H; Michitsuji T; Shibata R
    Photochem Photobiol Sci; 2008 Oct; 7(10):1225-30. PubMed ID: 18846287
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biexciton resonance energy transfer in a model photosystem.
    Jenkins RD; Andrews DL
    Photochem Photobiol Sci; 2004 Jan; 3(1):39-46. PubMed ID: 14743278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chromatic adaptation of photosynthetic membranes.
    Scheuring S; Sturgis JN
    Science; 2005 Jul; 309(5733):484-7. PubMed ID: 16020739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactions between colloidal silver and photosynthetic pigments located in cyanobacteria fragments and in solution.
    Siejak P; Frackowiak D
    J Photochem Photobiol B; 2007 Sep; 88(2-3):126-30. PubMed ID: 17709255
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The 17-propionate function of (bacterio)chlorophylls: biological implication of their long esterifying chains in photosynthetic systems.
    Tamiaki H; Shibata R; Mizoguchi T
    Photochem Photobiol; 2007; 83(1):152-62. PubMed ID: 16776548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Excitation energy transfer in a classical analogue of photosynthetic antennae.
    ManĨal T
    J Phys Chem B; 2013 Sep; 117(38):11282-91. PubMed ID: 23822554
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical description of quantum effects in multi-chromophoric aggregates.
    Zimanyi EN; Silbey RJ
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3620-37. PubMed ID: 22753817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Significance of protein crowding, order and mobility for photosynthetic membrane functions.
    Kirchhoff H
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):967-70. PubMed ID: 18793171
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Specific Ca2+-binding motif in the LH1 complex from photosynthetic bacterium Thermochromatium tepidum as revealed by optical spectroscopy and structural modeling.
    Ma F; Kimura Y; Yu LJ; Wang P; Ai XC; Wang ZY; Zhang JP
    FEBS J; 2009 Mar; 276(6):1739-49. PubMed ID: 19226412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.