These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 19548707)

  • 1. A phase-field approach to no-slip boundary conditions in dissipative particle dynamics and other particle models for fluid flow in geometrically complex confined systems.
    Xu Z; Meakin P
    J Chem Phys; 2009 Jun; 130(23):234103. PubMed ID: 19548707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contact line motion in confined liquid-gas systems: Slip versus phase transition.
    Xu X; Qian T
    J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of mesoscopic particle-based methods in microfluidic geometries.
    Zhao T; Wang X; Jiang L; Larson RG
    J Chem Phys; 2013 Aug; 139(8):084109. PubMed ID: 24006976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constant-pressure simulations with dissipative particle dynamics.
    Trofimov SY; Nies EL; Michels MA
    J Chem Phys; 2005 Oct; 123(14):144102. PubMed ID: 16238369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A practical method to avoid bond crossing in two-dimensional dissipative particle dynamics simulations.
    Liu H; Xue YH; Qian HJ; Lu ZY; Sun CC
    J Chem Phys; 2008 Jul; 129(2):024902. PubMed ID: 18624558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics.
    Vázquez-Quesada A; Ellero M; Español P
    J Chem Phys; 2009 Jan; 130(3):034901. PubMed ID: 19173537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow-induced translocation of polymers through a fluidic channel: a dissipative particle dynamics simulation study.
    Guo J; Li X; Liu Y; Liang H
    J Chem Phys; 2011 Apr; 134(13):134906. PubMed ID: 21476773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study between dissipative particle dynamics and molecular dynamics for simple- and complex-geometry flows.
    Keaveny EE; Pivkin IV; Maxey M; Em Karniadakis G
    J Chem Phys; 2005 Sep; 123(10):104107. PubMed ID: 16178589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. General continuum boundary conditions for miscible binary fluids from molecular dynamics simulations.
    Denniston C; Robbins MO
    J Chem Phys; 2006 Dec; 125(21):214102. PubMed ID: 17166010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoscopic simulations of the counterion-induced electro-osmotic flow: a comparative study.
    Smiatek J; Sega M; Holm C; Schiller UD; Schmid F
    J Chem Phys; 2009 Jun; 130(24):244702. PubMed ID: 19566169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coarse graining and scaling in dissipative particle dynamics.
    Füchslin RM; Fellermann H; Eriksson A; Ziock HJ
    J Chem Phys; 2009 Jun; 130(21):214102. PubMed ID: 19508051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluid-solid boundary conditions for multiparticle collision dynamics.
    Whitmer JK; Luijten E
    J Phys Condens Matter; 2010 Mar; 22(10):104106. PubMed ID: 21389440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries.
    Berk Usta O; Ladd AJ; Butler JE
    J Chem Phys; 2005 Mar; 122(9):094902. PubMed ID: 15836176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyelectrolyte electrophoresis in nanochannels: a dissipative particle dynamics simulation.
    Smiatek J; Schmid F
    J Phys Chem B; 2010 May; 114(19):6266-72. PubMed ID: 20426440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic interaction in polymer solutions simulated with dissipative particle dynamics.
    Jiang W; Huang J; Wang Y; Laradji M
    J Chem Phys; 2007 Jan; 126(4):044901. PubMed ID: 17286503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesoscopic dynamics of colloids simulated with dissipative particle dynamics and fluid particle model.
    Dzwinel W; Yuen DA; Boryczko K
    J Mol Model; 2002 Jan; 8(1):33-43. PubMed ID: 12111400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A coarse-grained explicit solvent simulation of rheology of colloidal suspensions.
    Pryamitsyn V; Ganesan V
    J Chem Phys; 2005 Mar; 122(10):104906. PubMed ID: 15836357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption and disjoining pressure isotherms of confined polymers using dissipative particle dynamics.
    Goicochea AG
    Langmuir; 2007 Nov; 23(23):11656-63. PubMed ID: 17914849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamics of capillary imbibition under nanoconfinement.
    Stroberg W; Keten S; Liu WK
    Langmuir; 2012 Oct; 28(40):14488-95. PubMed ID: 22931154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic interactions for single dissipative-particle-dynamics particles and their clusters and filaments.
    Pan W; Fedosov DA; Karniadakis GE; Caswell B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046706. PubMed ID: 18999560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.