These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 19548798)
1. Evaluation of trajectory planning models for arm-reaching movements based on energy cost. Nishii J; Taniai Y Neural Comput; 2009 Sep; 21(9):2634-47. PubMed ID: 19548798 [TBL] [Abstract][Full Text] [Related]
2. The minimum endpoint variance trajectory depends on the profile of the signal-dependent noise. Iguchi N; Sakaguchi Y; Ishida F Biol Cybern; 2005 Apr; 92(4):219-28. PubMed ID: 15765212 [TBL] [Abstract][Full Text] [Related]
3. Optimality of Upper-Arm Reaching Trajectories Based on the Expected Value of the Metabolic Energy Cost. Taniai Y; Nishii J Neural Comput; 2015 Aug; 27(8):1721-37. PubMed ID: 26079750 [TBL] [Abstract][Full Text] [Related]
4. Different predictions by the minimum variance and minimum torque-change models on the skewness of movement velocity profiles. Tanaka H; Tai M; Qian N Neural Comput; 2004 Oct; 16(10):2021-40. PubMed ID: 15333205 [TBL] [Abstract][Full Text] [Related]
5. Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements. Ben-Itzhak S; Karniel A Neural Comput; 2008 Mar; 20(3):779-812. PubMed ID: 18045017 [TBL] [Abstract][Full Text] [Related]
6. Object grasping using the minimum variance model. Simmons G; Demiris Y Biol Cybern; 2006 May; 94(5):393-407. PubMed ID: 16479397 [TBL] [Abstract][Full Text] [Related]
7. Learning and generation of goal-directed arm reaching from scratch. Kambara H; Kim K; Shin D; Sato M; Koike Y Neural Netw; 2009 May; 22(4):348-61. PubMed ID: 19121565 [TBL] [Abstract][Full Text] [Related]
8. Influence of viscous loads on motor planning. Thoroughman KA; Wang W; Tomov DN J Neurophysiol; 2007 Aug; 98(2):870-7. PubMed ID: 17522176 [TBL] [Abstract][Full Text] [Related]
9. Manifold reaching paradigm: how do we handle target redundancy? Berret B; Chiovetto E; Nori F; Pozzo T J Neurophysiol; 2011 Oct; 106(4):2086-102. PubMed ID: 21734107 [TBL] [Abstract][Full Text] [Related]
10. The role of execution noise in movement variability. van Beers RJ; Haggard P; Wolpert DM J Neurophysiol; 2004 Feb; 91(2):1050-63. PubMed ID: 14561687 [TBL] [Abstract][Full Text] [Related]
11. Optimal control of redundant muscles in step-tracking wrist movements. Haruno M; Wolpert DM J Neurophysiol; 2005 Dec; 94(6):4244-55. PubMed ID: 16079196 [TBL] [Abstract][Full Text] [Related]
12. Optimal trajectory formation of constrained human arm reaching movements. Ohta K; Svinin MM; Luo Z; Hosoe S; Laboissière R Biol Cybern; 2004 Jul; 91(1):23-36. PubMed ID: 15309545 [TBL] [Abstract][Full Text] [Related]
13. Feedforward impedance control efficiently reduce motor variability. Osu R; Morishige K; Miyamoto H; Kawato M Neurosci Res; 2009 Sep; 65(1):6-10. PubMed ID: 19523999 [TBL] [Abstract][Full Text] [Related]
14. Reaching to grasp with a multi-jointed arm. I. Computational model. Torres EB; Zipser D J Neurophysiol; 2002 Nov; 88(5):2355-67. PubMed ID: 12424277 [TBL] [Abstract][Full Text] [Related]
15. Motor planning of arm movements is direction-dependent in the gravity field. Gentili R; Cahouet V; Papaxanthis C Neuroscience; 2007 Mar; 145(1):20-32. PubMed ID: 17224242 [TBL] [Abstract][Full Text] [Related]
16. Properties of synergies arising from a theory of optimal motor behavior. Chhabra M; Jacobs RA Neural Comput; 2006 Oct; 18(10):2320-42. PubMed ID: 16907628 [TBL] [Abstract][Full Text] [Related]
17. Using arm configuration to learn the effects of gyroscopes and other devices. Flanders M; Hondzinski JM; Soechting JF; Jackson JC J Neurophysiol; 2003 Jan; 89(1):450-9. PubMed ID: 12522193 [TBL] [Abstract][Full Text] [Related]
18. The central nervous system does not minimize energy cost in arm movements. Kistemaker DA; Wong JD; Gribble PL J Neurophysiol; 2010 Dec; 104(6):2985-94. PubMed ID: 20884757 [TBL] [Abstract][Full Text] [Related]
19. Kinematic invariants during cyclical arm movements. Dounskaia N Biol Cybern; 2007 Feb; 96(2):147-63. PubMed ID: 17031664 [TBL] [Abstract][Full Text] [Related]
20. The formation of trajectories during goal-oriented locomotion in humans. II. A maximum smoothness model. Pham QC; Hicheur H; Arechavaleta G; Laumond JP; Berthoz A Eur J Neurosci; 2007 Oct; 26(8):2391-403. PubMed ID: 17953626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]