These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 19548798)

  • 21. Concurrent adaptation of force and impedance in the redundant muscle system.
    Tee KP; Franklin DW; Kawato M; Milner TE; Burdet E
    Biol Cybern; 2010 Jan; 102(1):31-44. PubMed ID: 19936778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Movement curvature planning through force field internal models.
    Petreska B; Billard A
    Biol Cybern; 2009 May; 100(5):331-50. PubMed ID: 19381682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model.
    Nakano E; Imamizu H; Osu R; Uno Y; Gomi H; Yoshioka T; Kawato M
    J Neurophysiol; 1999 May; 81(5):2140-55. PubMed ID: 10322055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interacting noise sources shape patterns of arm movement variability in three-dimensional space.
    Apker GA; Darling TK; Buneo CA
    J Neurophysiol; 2010 Nov; 104(5):2654-66. PubMed ID: 20844108
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of predicted arm biomechanics on decision making.
    Cos I; BĂ©langer N; Cisek P
    J Neurophysiol; 2011 Jun; 105(6):3022-33. PubMed ID: 21451055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. COMAP: a new computational interpretation of human movement planning level based on coordinated minimum angle jerk policies and six universal movement elements.
    Emadi Andani M; Bahrami F
    Hum Mov Sci; 2012 Oct; 31(5):1037-55. PubMed ID: 22925477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Separate adaptive mechanisms for controlling trajectory and final position in reaching.
    Scheidt RA; Ghez C
    J Neurophysiol; 2007 Dec; 98(6):3600-13. PubMed ID: 17913996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimality of a kip performance on the high bar: an example of skilled goal-directed whole-body movement.
    Yamasaki T; Gotoh K; Xin X
    Hum Mov Sci; 2010 Jun; 29(3):464-82. PubMed ID: 20451277
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Directional biases reveal utilization of arm's biomechanical properties for optimization of motor behavior.
    Goble JA; Zhang Y; Shimansky Y; Sharma S; Dounskaia NV
    J Neurophysiol; 2007 Sep; 98(3):1240-52. PubMed ID: 17625062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computing movement geometry: a step in sensory-motor transformations.
    Zipser D; Torres E
    Prog Brain Res; 2007; 165():411-24. PubMed ID: 17925261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomimetics of human movement: functional or aesthetic?
    Harris CM
    Bioinspir Biomim; 2009 Sep; 4(3):033001. PubMed ID: 19567935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coding of movement- and force-related information in primate primary motor cortex: a computational approach.
    Guigon E; Baraduc P; Desmurget M
    Eur J Neurosci; 2007 Jul; 26(1):250-60. PubMed ID: 17573920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The duration of reaching movement is longer than predicted by minimum variance.
    Wang C; Xiao Y; Burdet E; Gordon J; Schweighofer N
    J Neurophysiol; 2016 Nov; 116(5):2342-2345. PubMed ID: 27559137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Signal-dependent noise determines motor planning.
    Harris CM; Wolpert DM
    Nature; 1998 Aug; 394(6695):780-4. PubMed ID: 9723616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Minimum acceleration with constraints of center of mass: a unified model for arm movements and object manipulation.
    Leib R; Karniel A
    J Neurophysiol; 2012 Sep; 108(6):1646-55. PubMed ID: 22696546
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pick to place trajectories in human arm training environment.
    Ziherl J; Podobnik J; Sikic M; Munih M
    Technol Health Care; 2009; 17(4):323-35. PubMed ID: 19822948
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational motor control: feedback and accuracy.
    Guigon E; Baraduc P; Desmurget M
    Eur J Neurosci; 2008 Feb; 27(4):1003-16. PubMed ID: 18279368
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An optimization principle for determining movement duration.
    Tanaka H; Krakauer JW; Qian N
    J Neurophysiol; 2006 Jun; 95(6):3875-86. PubMed ID: 16571740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring smoothness and discontinuities in human motor behaviour with Fourier analysis.
    Harris CM
    Math Biosci; 2004; 188():99-116. PubMed ID: 14766096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Movement variability resulting from different noise sources: a simulation study.
    Shi Y; Buneo CA
    Hum Mov Sci; 2012 Aug; 31(4):772-90. PubMed ID: 22795761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.