These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 19549075)
1. Methods for computer-aided chemical biology. Part 5: rationalizing the selectivity of cathepsin inhibitors on the basis of molecular fragments and topological feature distributions. Ahmed HE; Bajorath J Chem Biol Drug Des; 2009 Aug; 74(2):129-41. PubMed ID: 19549075 [TBL] [Abstract][Full Text] [Related]
2. Methods for computer-aided chemical biology. Part 4: selectivity searching for ion channel ligands and mapping of molecular fragments as selectivity markers. Ahmed HE; Geppert H; Stumpfe D; Lounkine E; Bajorath J Chem Biol Drug Des; 2009 Mar; 73(3):273-82. PubMed ID: 19207462 [TBL] [Abstract][Full Text] [Related]
3. Formal concept analysis for the identification of molecular fragment combinations specific for active and highly potent compounds. Lounkine E; Auer J; Bajorath J J Med Chem; 2008 Sep; 51(17):5342-8. PubMed ID: 18698757 [TBL] [Abstract][Full Text] [Related]
4. Design of selective Cathepsin inhibitors. Bethel PA; Gerhardt S; Jones EV; Kenny PW; Karoutchi GI; Morley AD; Oldham K; Rankine N; Augustin M; Krapp S; Simader H; Steinbacher S Bioorg Med Chem Lett; 2009 Aug; 19(16):4622-5. PubMed ID: 19616430 [TBL] [Abstract][Full Text] [Related]
5. Methods for computer-aided chemical biology. Part 3: analysis of structure-selectivity relationships through single- or dual-step selectivity searching and Bayesian classification. Stumpfe D; Geppert H; Bajorath J Chem Biol Drug Des; 2008 Jun; 71(6):518-28. PubMed ID: 18482335 [TBL] [Abstract][Full Text] [Related]
6. Fragment formal concept analysis accurately classifies compounds with closely related biological activities. Krüger F; Lounkine E; Bajorath J ChemMedChem; 2009 Jul; 4(7):1174-81. PubMed ID: 19384901 [TBL] [Abstract][Full Text] [Related]
7. Design and synthesis of arylaminoethyl amides as noncovalent inhibitors of cathepsin S. Part 1. Liu H; Tully DC; Epple R; Bursulaya B; Li J; Harris JL; Williams JA; Russo R; Tumanut C; Roberts MJ; Alper PB; He Y; Karanewsky DS Bioorg Med Chem Lett; 2005 Nov; 15(22):4979-84. PubMed ID: 16183279 [TBL] [Abstract][Full Text] [Related]
8. Solid-phase parallel synthesis and SAR of 4-amidofuran-3-one inhibitors of cathepsin S: effect of sulfonamides P3 substituents on potency and selectivity. Ayesa S; Lindquist C; Agback T; Benkestock K; Classon B; Henderson I; Hewitt E; Jansson K; Kallin A; Sheppard D; Samuelsson B Bioorg Med Chem; 2009 Feb; 17(3):1307-24. PubMed ID: 19124252 [TBL] [Abstract][Full Text] [Related]
9. Hit expansion through computational selectivity searching. Stumpfe D; Frizler M; Sisay MT; Batista J; Vogt I; Gütschow M; Bajorath J ChemMedChem; 2009 Jan; 4(1):52-4. PubMed ID: 19053132 [No Abstract] [Full Text] [Related]
10. Identification of selective, nonpeptidic nitrile inhibitors of cathepsin s using the substrate activity screening method. Patterson AW; Wood WJ; Hornsby M; Lesley S; Spraggon G; Ellman JA J Med Chem; 2006 Oct; 49(21):6298-307. PubMed ID: 17034136 [TBL] [Abstract][Full Text] [Related]
11. Keto-1,3,4-oxadiazoles as cathepsin K inhibitors. Palmer JT; Hirschbein BL; Cheung H; McCarter J; Janc JW; Yu ZW; Wesolowski G Bioorg Med Chem Lett; 2006 Jun; 16(11):2909-14. PubMed ID: 16546382 [TBL] [Abstract][Full Text] [Related]
12. Methods for computer-aided chemical biology. Part 2: Evaluation of compound selectivity using 2D molecular fingerprints. Vogt I; Stumpfe D; Ahmed HE; Bajorath J Chem Biol Drug Des; 2007 Sep; 70(3):195-205. PubMed ID: 17718714 [TBL] [Abstract][Full Text] [Related]
13. From structure-activity to structure-selectivity relationships: quantitative assessment, selectivity cliffs, and key compounds. Peltason L; Hu Y; Bajorath J ChemMedChem; 2009 Nov; 4(11):1864-73. PubMed ID: 19750525 [TBL] [Abstract][Full Text] [Related]
14. Azepanone-based inhibitors of human cathepsin S: optimization of selectivity via the P2 substituent. Kerns JK; Nie H; Bondinell W; Widdowson KL; Yamashita DS; Rahman A; Podolin PL; Carpenter DC; Jin Q; Riflade B; Dong X; Nevins N; Keller PM; Mitchell L; Tomaszek T Bioorg Med Chem Lett; 2011 Aug; 21(15):4409-15. PubMed ID: 21733692 [TBL] [Abstract][Full Text] [Related]
15. Substrate activity screening: a fragment-based method for the rapid identification of nonpeptidic protease inhibitors. Wood WJ; Patterson AW; Tsuruoka H; Jain RK; Ellman JA J Am Chem Soc; 2005 Nov; 127(44):15521-7. PubMed ID: 16262416 [TBL] [Abstract][Full Text] [Related]
16. 2-Cyano-pyrimidines: a new chemotype for inhibitors of the cysteine protease cathepsin K. Altmann E; Aichholz R; Betschart C; Buhl T; Green J; Irie O; Teno N; Lattmann R; Tintelnot-Blomley M; Missbach M J Med Chem; 2007 Feb; 50(4):591-4. PubMed ID: 17256925 [TBL] [Abstract][Full Text] [Related]
17. Computational analysis of multi-target structure-activity relationships to derive preference orders for chemical modifications toward target selectivity. Wassermann AM; Peltason L; Bajorath J ChemMedChem; 2010 Jun; 5(6):847-58. PubMed ID: 20414918 [TBL] [Abstract][Full Text] [Related]
19. A library of novel hydroxamic acids targeting the metallo-protease family: design, parallel synthesis and screening. Flipo M; Beghyn T; Charton J; Leroux VA; Deprez BP; Deprez-Poulain RF Bioorg Med Chem; 2007 Jan; 15(1):63-76. PubMed ID: 17070058 [TBL] [Abstract][Full Text] [Related]
20. 3,4-disubstituted azetidinones as selective inhibitors of the cysteine protease cathepsin K. Exploring P3 elements for potency and selectivity. Setti EL; Davis D; Janc JW; Jeffery DA; Cheung H; Yu W Bioorg Med Chem Lett; 2005 Mar; 15(5):1529-34. PubMed ID: 15713422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]