These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 19549297)

  • 1. Geostatistical evaluation of integrated marsh management impact on mosquito vectors using before-after-control-impact (BACI) design.
    Rochlin I; Iwanejko T; Dempsey ME; Ninivaggi DV
    Int J Health Geogr; 2009 Jun; 8():35. PubMed ID: 19549297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of open marsh water management on numbers of larval salt marsh mosquitoes.
    James-Pirri MJ; Ginsberg HS; Erwin RM; Taylor J
    J Med Entomol; 2009 Nov; 46(6):1392-9. PubMed ID: 19960686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mosquitoes associated with ditch-plugged and control tidal salt marshes on the Delmarva Peninsula.
    Leisnham PT; Sandoval-Mohapatra S
    Int J Environ Res Public Health; 2011 Aug; 8(8):3099-113. PubMed ID: 21909293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The runnelling method of habitat modification: an environment-focused tool for salt marsh mosquito management.
    Hulsman K; Dale PE; Kay BH
    J Am Mosq Control Assoc; 1989 Jun; 5(2):226-34. PubMed ID: 2568396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anthropogenic ecological change and impacts on mosquito breeding and control strategies in salt-marshes, Northern Territory, Australia.
    Jacups S; Warchot A; Whelan P
    Ecohealth; 2012 Jun; 9(2):183-94. PubMed ID: 22476689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of open marsh water management on selected tidal marsh resources: a review.
    Wolfe RJ
    J Am Mosq Control Assoc; 1996 Dec; 12(4):701-12. PubMed ID: 9046479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physico-chemical and biological characterization of anopheline mosquito larval habitats (Diptera: Culicidae): implications for malaria control.
    Mereta ST; Yewhalaw D; Boets P; Ahmed A; Duchateau L; Speybroeck N; Vanwambeke SO; Legesse W; De Meester L; Goethals PL
    Parasit Vectors; 2013 Nov; 6(1):320. PubMed ID: 24499518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aquatic insects of New York salt marsh associated with mosquito larval habitat and their potential utility as bioindicators.
    Rochlin I; Dempsey ME; Iwanejko T; Ninivaggi DV
    J Insect Sci; 2011; 11():172. PubMed ID: 22957707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of mosquito larval productivity among different land use types for targeted malaria vector control in the western Kenya highlands.
    Kweka EJ; Munga S; Himeidan Y; Githeko AK; Yan G
    Parasit Vectors; 2015 Jul; 8():356. PubMed ID: 26142904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field effectiveness of microbial larvicides on mosquito larvae in malaria areas of Botswana and Zimbabwe.
    Mpofu M; Becker P; Mudambo K; de Jager C
    Malar J; 2016 Dec; 15(1):586. PubMed ID: 27923385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the wildlife habitat value of New England salt marshes: I. Model and application.
    McKinney RA; Charpentier MA; Wigand C
    Environ Monit Assess; 2009 Jul; 154(1-4):29-40. PubMed ID: 18592388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Sequestration in Tidal Salt Marshes of the Northeast United States.
    Drake K; Halifax H; Adamowicz SC; Craft C
    Environ Manage; 2015 Oct; 56(4):998-1008. PubMed ID: 26108413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adverse effects of mosquito control using Bacillus thuringiensis var. israelensis: Reduced chironomid abundances in mesocosm, semi-field and field studies.
    Allgeier S; Kästel A; Brühl CA
    Ecotoxicol Environ Saf; 2019 Mar; 169():786-796. PubMed ID: 30597777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of salt marsh mosquito populations by the 18.6-yr lunar-nodal cycle.
    Rochlin I; Morris JT
    Ecology; 2017 Aug; 98(8):2059-2068. PubMed ID: 28418218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate of methoprene in temperate salt marsh ditches following aerial applications.
    Tonjes DJ; McElroy AE; Barnes-Pohjonen RK; Ninivaggi DV; Dawydiak W; Greene GT; Brownawell BJ
    Sci Total Environ; 2018 Nov; 642():394-407. PubMed ID: 29906730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achieving high coverage of larval-stage mosquito surveillance: challenges for a community-based mosquito control programme in urban Dar es Salaam, Tanzania.
    Chaki PP; Govella NJ; Shoo B; Hemed A; Tanner M; Fillinger U; Killeen GF
    Malar J; 2009 Dec; 8():311. PubMed ID: 20042071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal dynamics of immature culicines (subfamily Culicinae) and their larval habitats in Mwea Rice Scheme, Kenya.
    Muturi EJ; Mwangangi JM; Jacob BG; Shililu JI; Mbogo CM; Githure JI; Novak RJ
    Parasitol Res; 2009 Mar; 104(4):851-9. PubMed ID: 19034518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anopheles larval species composition and characterization of breeding habitats in two localities in the Ghibe River Basin, southwestern Ethiopia.
    Getachew D; Balkew M; Tekie H
    Malar J; 2020 Feb; 19(1):65. PubMed ID: 32046734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Habitat modification for mosquito control in the Ilparpa Swamp, Northern Territory, Australia.
    Jacups S; Kurucz N; Whitters R; Whelan P
    J Vector Ecol; 2011 Dec; 36(2):292-9. PubMed ID: 22129400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Where have all the mosquito nets gone? Spatial modelling reveals mosquito net distributions across Tanzania do not target optimal Anopheles mosquito habitats.
    Acheson ES; Plowright AA; Kerr JT
    Malar J; 2015 Aug; 14():322. PubMed ID: 26283538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.