BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 19549600)

  • 1. Physically discrete beta-lactamase-type thioesterase catalyzes product release in atrochrysone synthesis by iterative type I polyketide synthase.
    Awakawa T; Yokota K; Funa N; Doi F; Mori N; Watanabe H; Horinouchi S
    Chem Biol; 2009 Jun; 16(6):613-23. PubMed ID: 19549600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient heterologous production of atrochrysone carboxylic acid-related polyketides in an Aspergillus oryzae host with enhanced malonyl-coenzyme A supply.
    Kan E; Katsuyama Y; Maruyama JI; Tamano K; Koyama Y; Ohnishi Y
    J Gen Appl Microbiol; 2020 Aug; 66(3):195-199. PubMed ID: 31776294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical characterization of the minimal polyketide synthase domains in the lovastatin nonaketide synthase LovB.
    Ma SM; Tang Y
    FEBS J; 2007 Jun; 274(11):2854-64. PubMed ID: 17466016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent linkage mediates communication between ACP and TE domains in modular polyketide synthases.
    Tran L; Tosin M; Spencer JB; Leadlay PF; Weissman KJ
    Chembiochem; 2008 Apr; 9(6):905-15. PubMed ID: 18348128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of modification of the length and flexibility of the acyl carrier protein-thioesterase interdomain linker on functionality of the animal fatty acid synthase.
    Joshi AK; Witkowski A; Berman HA; Zhang L; Smith S
    Biochemistry; 2005 Mar; 44(10):4100-7. PubMed ID: 15751987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bifunctionality of ActIV as a Cyclase-Thioesterase Revealed by in Vitro Reconstitution of Actinorhodin Biosynthesis in Streptomyces coelicolor A3(2).
    Taguchi T; Awakawa T; Nishihara Y; Kawamura M; Ohnishi Y; Ichinose K
    Chembiochem; 2017 Feb; 18(3):316-323. PubMed ID: 27897367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-malonylation is an intrinsic property of a chemically synthesized type II polyketide synthase acyl carrier protein.
    Arthur CJ; Szafranska A; Evans SE; Findlow SC; Burston SG; Owen P; Clark-Lewis I; Simpson TJ; Crosby J; Crump MP
    Biochemistry; 2005 Nov; 44(46):15414-21. PubMed ID: 16285746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The acyltransferase homologue from the initiation module of the R1128 polyketide synthase is an acyl-ACP thioesterase that edits acetyl primer units.
    Tang Y; Koppisch AT; Khosla C
    Biochemistry; 2004 Jul; 43(29):9546-55. PubMed ID: 15260498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression and characterization of polyketide synthase module involved in the late step of cephabacin biosynthesis from Lysobacter lactamgenus.
    Lee JS; Vladimirova MG; Demirev AV; Kim BG; Lim SK; Nam DH
    J Microbiol Biotechnol; 2008 Mar; 18(3):427-33. PubMed ID: 18388458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of NanE as the thioesterase for polyether chain release in nanchangmycin biosynthesis.
    Liu T; You D; Valenzano C; Sun Y; Li J; Yu Q; Zhou X; Cane DE; Deng Z
    Chem Biol; 2006 Sep; 13(9):945-55. PubMed ID: 16984884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the modularity of the modular polyketide synthases: transacylation in modular polyketide synthases catalyzed by malonyl-CoA:ACP transacylase.
    Kumar P; Koppisch AT; Cane DE; Khosla C
    J Am Chem Soc; 2003 Nov; 125(47):14307-12. PubMed ID: 14624579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The malonyl transferase activity of type II polyketide synthase acyl carrier proteins.
    Arthur CJ; Szafranska AE; Long J; Mills J; Cox RJ; Findlow SC; Simpson TJ; Crump MP; Crosby J
    Chem Biol; 2006 Jun; 13(6):587-96. PubMed ID: 16793516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for a protein-protein interaction motif on an acyl carrier protein domain from a modular polyketide synthase.
    Weissman KJ; Hong H; Popovic B; Meersman F
    Chem Biol; 2006 Jun; 13(6):625-36. PubMed ID: 16793520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iterative type I polyketide synthases involved in enediyne natural product biosynthesis.
    Chen X; Ji R; Jiang X; Yang R; Liu F; Xin Y
    IUBMB Life; 2014 Sep; 66(9):587-95. PubMed ID: 25278375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for a novel phosphopantetheinyl transferase domain in the polyketide synthase for enediyne biosynthesis.
    Murugan E; Liang ZX
    FEBS Lett; 2008 Apr; 582(7):1097-103. PubMed ID: 18319060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The thioesterase domain from the pimaricin and erythromycin biosynthetic pathways can catalyze hydrolysis of simple thioester substrates.
    Sharma KK; Boddy CN
    Bioorg Med Chem Lett; 2007 Jun; 17(11):3034-7. PubMed ID: 17428661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GNAT-like strategy for polyketide chain initiation.
    Gu L; Geders TW; Wang B; Gerwick WH; Håkansson K; Smith JL; Sherman DH
    Science; 2007 Nov; 318(5852):970-4. PubMed ID: 17991863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unprecedented mechanism of chain length determination in fungal aromatic polyketide synthases.
    Watanabe A; Ebizuka Y
    Chem Biol; 2004 Aug; 11(8):1101-6. PubMed ID: 15324811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic relationships between type I and type II iterative polyketide synthases: The Aspergillus parasiticus norsolorinic acid synthase.
    Ma Y; Smith LH; Cox RJ; Beltran-Alvarez P; Arthur CJ; Simpson F R S TJ
    Chembiochem; 2006 Dec; 7(12):1951-8. PubMed ID: 17086560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structure of a mammalian fatty acid synthase.
    Maier T; Leibundgut M; Ban N
    Science; 2008 Sep; 321(5894):1315-22. PubMed ID: 18772430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.