BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

773 related articles for article (PubMed ID: 19549680)

  • 1. RAMA1 is a novel kinetochore protein involved in kinetochore-microtubule attachment.
    Raaijmakers JA; Tanenbaum ME; Maia AF; Medema RH
    J Cell Sci; 2009 Jul; 122(Pt 14):2436-45. PubMed ID: 19549680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hec1 sequentially recruits Zwint-1 and ZW10 to kinetochores for faithful chromosome segregation and spindle checkpoint control.
    Lin YT; Chen Y; Wu G; Lee WH
    Oncogene; 2006 Nov; 25(52):6901-14. PubMed ID: 16732327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleophosmin is required for chromosome congression, proper mitotic spindle formation, and kinetochore-microtubule attachment in HeLa cells.
    Amin MA; Matsunaga S; Uchiyama S; Fukui K
    FEBS Lett; 2008 Nov; 582(27):3839-44. PubMed ID: 18951898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nuclear scaffold protein SAF-A is required for kinetochore-microtubule attachment and contributes to the targeting of Aurora-A to mitotic spindles.
    Ma N; Matsunaga S; Morimoto A; Sakashita G; Urano T; Uchiyama S; Fukui K
    J Cell Sci; 2011 Feb; 124(Pt 3):394-404. PubMed ID: 21242313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xenopus Cep57 is a novel kinetochore component involved in microtubule attachment.
    Emanuele MJ; Stukenberg PT
    Cell; 2007 Sep; 130(5):893-905. PubMed ID: 17803911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KNL-1 directs assembly of the microtubule-binding interface of the kinetochore in C. elegans.
    Desai A; Rybina S; Müller-Reichert T; Shevchenko A; Shevchenko A; Hyman A; Oegema K
    Genes Dev; 2003 Oct; 17(19):2421-35. PubMed ID: 14522947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different spindle checkpoint proteins monitor microtubule attachment and tension at kinetochores in Drosophila cells.
    Logarinho E; Bousbaa H; Dias JM; Lopes C; Amorim I; Antunes-Martins A; Sunkel CE
    J Cell Sci; 2004 Apr; 117(Pt 9):1757-71. PubMed ID: 15075237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammalian CLASPs are required for mitotic spindle organization and kinetochore alignment.
    Mimori-Kiyosue Y; Grigoriev I; Sasaki H; Matsui C; Akhmanova A; Tsukita S; Vorobjev I
    Genes Cells; 2006 Aug; 11(8):845-57. PubMed ID: 16866869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The CENP-F-like proteins HCP-1 and HCP-2 target CLASP to kinetochores to mediate chromosome segregation.
    Cheeseman IM; MacLeod I; Yates JR; Oegema K; Desai A
    Curr Biol; 2005 Apr; 15(8):771-7. PubMed ID: 15854912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of spindle-pole organization are influenced by kinetochore activity in mammalian cells.
    Manning AL; Compton DA
    Curr Biol; 2007 Feb; 17(3):260-5. PubMed ID: 17276919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint.
    Yao X; Abrieu A; Zheng Y; Sullivan KF; Cleveland DW
    Nat Cell Biol; 2000 Aug; 2(8):484-91. PubMed ID: 10934468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2.
    Martin-Lluesma S; Stucke VM; Nigg EA
    Science; 2002 Sep; 297(5590):2267-70. PubMed ID: 12351790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential roles for cohesin in kinetochore and spindle function in Xenopus egg extracts.
    Kenney RD; Heald R
    J Cell Sci; 2006 Dec; 119(Pt 24):5057-66. PubMed ID: 17158911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nup358 integrates nuclear envelope breakdown with kinetochore assembly.
    Salina D; Enarson P; Rattner JB; Burke B
    J Cell Biol; 2003 Sep; 162(6):991-1001. PubMed ID: 12963708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetochores accelerate centrosome separation to ensure faithful chromosome segregation.
    McHedlishvili N; Wieser S; Holtackers R; Mouysset J; Belwal M; Amaro AC; Meraldi P
    J Cell Sci; 2012 Feb; 125(Pt 4):906-18. PubMed ID: 22399803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the spindle-assembly checkpoint in HeLa cells.
    Andreassen PR; Skoufias DA; Margolis RL
    Methods Mol Biol; 2004; 281():213-25. PubMed ID: 15220532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cdc42 and mDia3 regulate microtubule attachment to kinetochores.
    Yasuda S; Oceguera-Yanez F; Kato T; Okamoto M; Yonemura S; Terada Y; Ishizaki T; Narumiya S
    Nature; 2004 Apr; 428(6984):767-71. PubMed ID: 15085137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability of kinetochore-microtubule attachment and the role of different KMN network components in Drosophila.
    Feijão T; Afonso O; Maia AF; Sunkel CE
    Cytoskeleton (Hoboken); 2013 Oct; 70(10):661-75. PubMed ID: 23959943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclin G-associated kinase promotes microtubule outgrowth from chromosomes during spindle assembly.
    Tanenbaum ME; Vallenius T; Geers EF; Greene L; Mäkelä TP; Medema RH
    Chromosoma; 2010 Aug; 119(4):415-24. PubMed ID: 20237935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tension between two kinetochores suffices for their bi-orientation on the mitotic spindle.
    Dewar H; Tanaka K; Nasmyth K; Tanaka TU
    Nature; 2004 Mar; 428(6978):93-7. PubMed ID: 14961024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.