BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 19549846)

  • 1. Detection and differentiation of normal, cancerous, and metastatic cells using nanoparticle-polymer sensor arrays.
    Bajaj A; Miranda OR; Kim IB; Phillips RL; Jerry DJ; Bunz UH; Rotello VM
    Proc Natl Acad Sci U S A; 2009 Jul; 106(27):10912-6. PubMed ID: 19549846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Array-based sensing of normal, cancerous, and metastatic cells using conjugated fluorescent polymers.
    Bajaj A; Miranda OR; Phillips R; Kim IB; Jerry DJ; Bunz UH; Rotello VM
    J Am Chem Soc; 2010 Jan; 132(3):1018-22. PubMed ID: 20039629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticle-GFP "chemical nose" sensor for cancer cell identification.
    Moyano DF; Rotello VM
    Methods Mol Biol; 2013; 991():1-8. PubMed ID: 23546653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and identification of proteins using nanoparticle-fluorescent polymer 'chemical nose' sensors.
    You CC; Miranda OR; Gider B; Ghosh PS; Kim IB; Erdogan B; Krovi SA; Bunz UH; Rotello VM
    Nat Nanotechnol; 2007 May; 2(5):318-23. PubMed ID: 18654291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanoparticle-fluorophore complexes: sensitive and discerning "noses" for biosystems sensing.
    Bunz UH; Rotello VM
    Angew Chem Int Ed Engl; 2010 Apr; 49(19):3268-79. PubMed ID: 20405519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silicon nanograss based impedance biosensor for label free detection of rare metastatic cells among primary cancerous colon cells, suitable for more accurate cancer staging.
    Abdolahad M; Shashaani H; Janmaleki M; Mohajerzadeh S
    Biosens Bioelectron; 2014 Sep; 59():151-9. PubMed ID: 24727600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular recognition of proteolytic activity in metastatic cancer cells using fluorogenic gold nanoprobes.
    Hong Y; Ku M; Heo D; Hwang S; Lee E; Park J; Choi J; Lee HJ; Seo M; Lee EJ; Yook JI; Haam S; Huh YM; Yoon DS; Suh JS; Yang J
    Biosens Bioelectron; 2014 Jul; 57():171-8. PubMed ID: 24583688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ratiometric Array of Conjugated Polymers-Fluorescent Protein Provides a Robust Mammalian Cell Sensor.
    Rana S; Elci SG; Mout R; Singla AK; Yazdani M; Bender M; Bajaj A; Saha K; Bunz UH; Jirik FR; Rotello VM
    J Am Chem Soc; 2016 Apr; 138(13):4522-9. PubMed ID: 26967961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing a nanoparticle-containing polymeric substrate for detecting cancer cells by computer simulations.
    Huang LY; Yu YS; Lu X; Ding HM; Ma YQ
    Nanoscale; 2019 Jan; 11(5):2170-2178. PubMed ID: 30376020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MoS
    Xiang Y; Liu J; Chen J; Xiao M; Pei H; Li L
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):15861-15869. PubMed ID: 38508220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Array-based identification of triple-negative breast cancer cells using fluorescent nanodot-graphene oxide complexes.
    Tao Y; Auguste DT
    Biosens Bioelectron; 2016 Jul; 81():431-437. PubMed ID: 27003608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silica nanoparticle assisted DNA assays for optical signal amplification of conjugated polymer based fluorescent sensors.
    Wang Y; Liu B
    Chem Commun (Camb); 2007 Sep; (34):3553-5. PubMed ID: 18080542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amperometric sensing of HIF1α expressed in cancer cells and the effect of hypoxic mimicking agents.
    Hussain KK; Gurudatt NG; Mir TA; Shim YB
    Biosens Bioelectron; 2016 Sep; 83():312-8. PubMed ID: 27132006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing Cancer Metastasis at a Single-Cell Level with a Raman-Functionalized Anionic Probe.
    Dharmalingam P; Venkatakrishnan K; Tan B
    Nano Lett; 2020 Feb; 20(2):1054-1066. PubMed ID: 31904972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Array-based sensing with nanoparticles: 'chemical noses' for sensing biomolecules and cell surfaces.
    Miranda OR; Creran B; Rotello VM
    Curr Opin Chem Biol; 2010 Dec; 14(6):728-36. PubMed ID: 20801707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pattern-recognition-based Sensor Arrays for Cell Characterization: From Materials and Data Analyses to Biomedical Applications.
    Sugai H; Tomita S; Kurita R
    Anal Sci; 2020 Aug; 36(8):923-934. PubMed ID: 32249248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conjugated polymer nanoparticles-based fluorescent biosensor for ultrasensitive detection of hydroquinone.
    Liu Y; Wang YM; Zhu WY; Zhang CH; Tang H; Jiang JH
    Anal Chim Acta; 2018 Jul; 1012():60-65. PubMed ID: 29475474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Nanoparticle Cocktail: Temporal Release of Predefined Drug Combinations.
    Pathak RK; Dhar S
    J Am Chem Soc; 2015 Jul; 137(26):8324-7. PubMed ID: 26086212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecularly imprinted polymer based micromechanical cantilever sensor system for the selective determination of ciprofloxacin.
    Okan M; Sari E; Duman M
    Biosens Bioelectron; 2017 Feb; 88():258-264. PubMed ID: 27595169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser fabrication of large-scale nanoparticle arrays for sensing applications.
    Kuznetsov AI; Evlyukhin AB; Gonçalves MR; Reinhardt C; Koroleva A; Arnedillo ML; Kiyan R; Marti O; Chichkov BN
    ACS Nano; 2011 Jun; 5(6):4843-9. PubMed ID: 21539373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.