BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 19549942)

  • 1. Evaluating nonpoint source critical source area contributions at the watershed scale.
    White MJ; Storm DE; Busteed PR; Stoodley SH; Phillips SJ
    J Environ Qual; 2009; 38(4):1654-63. PubMed ID: 19549942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated watershed- and farm-scale modeling framework for targeting critical source areas while maintaining farm economic viability.
    Ghebremichael LT; Veith TL; Hamlett JM
    J Environ Manage; 2013 Jan; 114():381-94. PubMed ID: 23195139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward quantifying water pollution abatement in response to installing buffers on crop land.
    Dosskey MG
    Environ Manage; 2001 Nov; 28(5):577-98. PubMed ID: 11568840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of targeting methods for implementation of best management practices in the Saginaw River Watershed.
    Giri S; Nejadhashemi AP; Woznicki SA
    J Environ Manage; 2012 Jul; 103():24-40. PubMed ID: 22459068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorus reductions following riparian restoration in two agricultural watersheds in Vermont, USA.
    Meals DW; Hopkins RB
    Water Sci Technol; 2002; 45(9):51-60. PubMed ID: 12079124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative assessment of agricultural runoff and soil erosion using mathematical modeling: applications in the Mediterranean region.
    Arhonditsis G; Giourga C; Loumou A; Koulouri M
    Environ Manage; 2002 Sep; 30(3):434-53. PubMed ID: 12148076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk-based targeting of diffuse contaminant sources at variable spatial scales in a New Zealand high country catchment.
    Caruso BS
    J Environ Manage; 2001 Nov; 63(3):249-68. PubMed ID: 11775498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systematic assessment of watershed-scale nonpoint source pollution during rainfall-runoff events in the Miyun Reservoir watershed.
    Qiu J; Shen Z; Wei G; Wang G; Xie H; Lv G
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):6514-6531. PubMed ID: 29255977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the success of phosphorus management from field to watershed.
    Sharpley AN; Kleinman PJ; Jordan P; Bergström L; Allen AL
    J Environ Qual; 2009; 38(5):1981-8. PubMed ID: 19704141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using the soil and water assessment tool to estimate achievable water quality targets through implementation of beneficial management practices in an agricultural watershed.
    Yang Q; Benoy GA; Chow TL; Daigle JL; Bourque CP; Meng FR
    J Environ Qual; 2012; 41(1):64-72. PubMed ID: 22218174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using wetlands for water quality improvement in agricultural watersheds; the importance of a watershed scale approach.
    Crumpton WG
    Water Sci Technol; 2001; 44(11-12):559-64. PubMed ID: 11804150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A watershed-scale assessment of cost-effectiveness of sediment abatement with flow diversion terraces.
    Yang Q; Zhao Z; Benoy G; Chow TL; Rees HW; Bourque CP; Meng FR
    J Environ Qual; 2010; 39(1):220-7. PubMed ID: 20048309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Setting priorities for research on pollution reduction functions of agricultural buffers.
    Dosskey MG
    Environ Manage; 2002 Nov; 30(5):641-50. PubMed ID: 12375085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperative identification for critical periods and critical source areas of nonpoint source pollution in a typical watershed in China.
    Ruan S; Zhuang Y; Hong S; Zhang L; Wang Z; Tang X; Wen W
    Environ Sci Pollut Res Int; 2020 Apr; 27(10):10472-10483. PubMed ID: 31939022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulated wetland conservation-restoration effects on water quantity and quality at watershed scale.
    Wang X; Shang S; Qu Z; Liu T; Melesse AM; Yang W
    J Environ Manage; 2010 Jul; 91(7):1511-25. PubMed ID: 20236754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative evaluation of the continuous and event-based modelling approaches for identifying critical source areas for sediment and phosphorus losses.
    Shrestha NK; Rudra RP; Daggupati P; Goel PK; Shukla R
    J Environ Manage; 2021 Jan; 277():111427. PubMed ID: 33069154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated watershed approach in controlling point and non-point source pollution within Zelivka drinking water reservoir.
    Holas J; Hrncir M
    Water Sci Technol; 2002; 45(9):293-300. PubMed ID: 12079117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling watershed-scale effectiveness of agricultural best management practices to reduce phosphorus loading.
    Rao NS; Easton ZM; Schneiderman EM; Zion MS; Lee DR; Steenhuis TS
    J Environ Manage; 2009 Mar; 90(3):1385-95. PubMed ID: 19008034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of critical source areas for non-point source pollution in Miyun reservoir watershed near Beijing, China.
    Ou Y; Wang X
    Water Sci Technol; 2008; 58(11):2235-41. PubMed ID: 19092201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approaches to the implementation of the Water Framework Directive: targeting mitigation measures at critical source areas of diffuse phosphorus in Irish catchments.
    Doody DG; Archbold M; Foy RH; Flynn R
    J Environ Manage; 2012 Jan; 93(1):225-34. PubMed ID: 22054589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.